Robust regression for mixed Poisson-Gaussian model

被引:6
|
作者
Kubinova, Marie [1 ]
Nagy, James G. [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Poisson-Gaussian model; Weighted least squares; Robust regression; Preconditioner; Image restoration; 65N20; 49M15; 62F35; ITERATIVE METHODS; IMAGE; PRECONDITIONERS; NOISE;
D O I
10.1007/s11075-017-0463-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on efficient computational approaches to compute approximate solutions of a linear inverse problem that is contaminated with mixed Poisson-Gaussian noise, and when there are additional outliers in the measured data. The Poisson-Gaussian noise leads to a weighted minimization problem, with solution-dependent weights. To address outliers, the standard least squares fit-to-data metric is replaced by the Talwar robust regression function. Convexity, regularization parameter selection schemes, and incorporation of non-negative constraints are investigated. A projected Newton algorithm is used to solve the resulting constrained optimization problem, and a preconditioner is proposed to accelerate conjugate gradient Hessian solves. Numerical experiments on problems from image deblurring illustrate the effectiveness of the methods.
引用
收藏
页码:825 / 851
页数:27
相关论文
共 50 条
  • [41] First-order primal-dual algorithm for image restoration corrupted by mixed Poisson-Gaussian noise
    Chen, Miao
    Wen, Meng
    Tang, Yuchao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 117
  • [42] Real-time image denoising of mixed Poisson-Gaussian noise in fluorescence microscopy images using ImageJ
    Mannam, Varun
    Zhang, Yide
    Zhu, Yinhao
    Nichols, Evan
    Wang, Qingfei
    Sundaresan, Vignesh
    Zhang, Siyuan
    Smith, Cody
    Bohn, Paul W.
    Howard, Scott S.
    OPTICA, 2022, 9 (04): : 335 - 345
  • [43] Undecimated Wavelet-based Bayesian Denoising in Mixed Poisson-Gaussian Noise with Application on Medical and Biological Images
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 39 - 43
  • [44] Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression
    Chen, Zezhun
    Dassios, Angelos
    Tzougas, George
    COMPUTATIONAL STATISTICS, 2023, 38 (02) : 955 - 977
  • [45] Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression
    Zezhun Chen
    Angelos Dassios
    George Tzougas
    Computational Statistics, 2023, 38 : 955 - 977
  • [46] Robust Poisson regression
    Tsou, TS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (09) : 3173 - 3186
  • [47] Global Optimization for Recovery of Clipped Signals Corrupted With Poisson-Gaussian Noise
    Marmin, Arthur
    Jezierska, Anna
    Castella, Marc
    Pesquet, Jean-Christophe
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 970 - 974
  • [48] FAST VARIATIONAL BAYESIAN SIGNAL RECOVERY IN THE PRESENCE OF POISSON-GAUSSIAN NOISE
    Marnissii, Yosra
    Zheng, Yuling
    Pesquet, Jean-Christophe
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3964 - 3968
  • [49] PoGaIN: Poisson-Gaussian Image Noise Modeling From Paired Samples
    Baehler, Nicolas
    El Helou, Majed
    Objois, Etienne
    Okumus, Kaan
    Suesstrunk, Sabine
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2602 - 2606
  • [50] Robust Gaussian process regression with a bias model
    Park, Chiwoo
    Borth, David J.
    Wilson, Nicholas S.
    Hunter, Chad N.
    Friedersdorf, Fritz J.
    PATTERN RECOGNITION, 2022, 124