Enforcing a System model to be Negative Imaginary via Perturbation of Hamiltonian Matrices

被引:0
|
作者
Mabrok, Mohamed A. [1 ]
Kallapur, Abhijit G. [1 ]
Petersen, Ian R. [1 ]
Lanzon, Alexander [2 ]
机构
[1] Australian Def Force Acad, Univ New S Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M13 9PL, Lancs, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
Negative imaginary systems; Positive real systems; Hamiltonian matrices; Passivity; PASSIVITY ENFORCEMENT; STABILITY; INTERCONNECTIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. However, in some cases, the models obtained for these systems may not satisfy the NI property. This paper provides a new method for enforcing such models to be NI. The results are based on a study of the spectral properties of related Hamiltonian matrices. A test for the negativity of the imaginary part of a corresponding transfer function matrix is first performed by checking for the existence of imaginary eigenvalues of the associated Hamiltonian matrix. In the presence of imaginary eigenvalues, the system is not NI. In such cases, a first-order perturbation is presented for the precise characterization of frequency bands where violations of the NI property occur. This characterization is then used for the design of an iterative perturbation scheme for state matrices aimed at displacing the imaginary eigenvalues of the Hamiltonian matrix away from the imaginary axis.
引用
收藏
页码:3748 / 3752
页数:5
相关论文
共 50 条
  • [41] NEGATIVE IMAGINARY THEOREM WITH AN APPLICATION TO ROBUST CONTROL OF A CRANE SYSTEM
    Abdullahi, Auwalu M.
    Mohamed, Z.
    Abidin, M. S. Zainal
    Akmeliawati, R.
    Husain, A. R.
    Bature, Amir A.
    Haruna, Ado
    JURNAL TEKNOLOGI, 2016, 78 (6-11): : 33 - 39
  • [42] A Subspace System Identification Algorithm Guaranteeing the Negative Imaginary Property
    Mabrok, M. A.
    Haggag, M. A.
    Petersen, I. R.
    Lanzon, A.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3180 - 3185
  • [43] Negative imaginary feedback control of satellite orbit dynamical model
    Choudhary, Santosh Kumar
    Chokkadi, Shreesha
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 12 (4) : 1044 - 1054
  • [44] Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence
    Cédric Bernardin
    Patrícia Gonçalves
    Milton Jara
    Marielle Simon
    Communications in Mathematical Physics, 2018, 361 : 605 - 659
  • [45] Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence
    Bernardin, Cedric
    Goncalves, Patricia
    Jara, Milton
    Simon, Marielle
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (02) : 605 - 659
  • [46] BIFURCATIONS OF LIMIT CYCLES IN PIECEWISE SMOOTH HAMILTONIAN SYSTEM WITH BOUNDARY PERTURBATION
    Phatangare, Nanasaheb
    Kendre, Subhash
    Masalkar, Krishnat
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (04): : 499 - 524
  • [47] Multiple solutions for a Hamiltonian elliptic system with sign-changing perturbation
    Peng Chen
    Longjiang Gu
    Yan Wu
    Acta Mathematica Scientia, 2025, 45 (2) : 602 - 614
  • [48] Perturbation Theory for Density Matrices and the Thermodynamic Potential of a Quantum System
    É. A. Arinshtein
    Theoretical and Mathematical Physics, 2001, 130 : 45 - 53
  • [49] Perturbation theory for density matrices and the thermodynamic potential of a quantum system
    Arinshtein, ÉA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 130 (01) : 45 - 53
  • [50] On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration
    Escobedo, Fernando A.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (11):