Enforcing a System model to be Negative Imaginary via Perturbation of Hamiltonian Matrices

被引:0
|
作者
Mabrok, Mohamed A. [1 ]
Kallapur, Abhijit G. [1 ]
Petersen, Ian R. [1 ]
Lanzon, Alexander [2 ]
机构
[1] Australian Def Force Acad, Univ New S Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M13 9PL, Lancs, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
Negative imaginary systems; Positive real systems; Hamiltonian matrices; Passivity; PASSIVITY ENFORCEMENT; STABILITY; INTERCONNECTIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. However, in some cases, the models obtained for these systems may not satisfy the NI property. This paper provides a new method for enforcing such models to be NI. The results are based on a study of the spectral properties of related Hamiltonian matrices. A test for the negativity of the imaginary part of a corresponding transfer function matrix is first performed by checking for the existence of imaginary eigenvalues of the associated Hamiltonian matrix. In the presence of imaginary eigenvalues, the system is not NI. In such cases, a first-order perturbation is presented for the precise characterization of frequency bands where violations of the NI property occur. This characterization is then used for the design of an iterative perturbation scheme for state matrices aimed at displacing the imaginary eigenvalues of the Hamiltonian matrix away from the imaginary axis.
引用
下载
收藏
页码:3748 / 3752
页数:5
相关论文
共 50 条
  • [21] The number of limit cycles of aquintic Hamiltonian system with perturbation
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 1 - 11
  • [22] The number of limit cycles of cubic Hamiltonian system with perturbation
    Wu, Cheng-qiang
    Xia, Yonghui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 943 - 949
  • [23] Two-frequency perturbation of a smooth Hamiltonian system
    Vecheslavov, VV
    TECHNICAL PHYSICS, 2003, 48 (09) : 1079 - 1089
  • [24] Instabilities via negative Krein signature in a weakly non-Hamiltonian DNLS model
    Kevrekidis, Panayotis G.
    MATHEMATICS IN ENGINEERING, 2019, 1 (02): : 378 - 390
  • [25] Making Nonlinear Systems Negative Imaginary via State Feedback
    Shi, Kanghong
    Petersen, Ian R.
    Vladimirov, Igor G.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3827 - 3832
  • [26] Making nonlinear systems negative imaginary via state feedback✩
    Shi, Kanghong
    Petersen, Ian R.
    Vladimirov, Igor G.
    AUTOMATICA, 2023, 155
  • [27] Moment matching model reduction for negative imaginary systems
    Yu, Lanlin
    Xiong, Junlin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (04): : 2274 - 2293
  • [28] Enforcing Passivity of Parameterized LTI Macromodels via Hamiltonian-Driven Multivariate Adaptive Sampling
    Zanco, Alessandro
    Grivet-Talocia, Stefano
    Bradde, Tommaso
    De Stefano, Marco
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (01) : 225 - 238
  • [29] CHAOTIC BEHAVIOR IN PLANAR QUADRATIC HAMILTONIAN SYSTEM WITH PERIODIC PERTURBATION
    李继彬
    刘曾荣
    Science Bulletin, 1985, (10) : 1285 - 1291
  • [30] PERTURBATION SERIES FOR JACOBI MATRICES AND THE QUANTUM RABI MODEL
    Charif, Mirna
    Zielinski, Lech
    OPUSCULA MATHEMATICA, 2021, 41 (03) : 301 - 333