Enforcing a System model to be Negative Imaginary via Perturbation of Hamiltonian Matrices

被引:0
|
作者
Mabrok, Mohamed A. [1 ]
Kallapur, Abhijit G. [1 ]
Petersen, Ian R. [1 ]
Lanzon, Alexander [2 ]
机构
[1] Australian Def Force Acad, Univ New S Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M13 9PL, Lancs, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
Negative imaginary systems; Positive real systems; Hamiltonian matrices; Passivity; PASSIVITY ENFORCEMENT; STABILITY; INTERCONNECTIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. However, in some cases, the models obtained for these systems may not satisfy the NI property. This paper provides a new method for enforcing such models to be NI. The results are based on a study of the spectral properties of related Hamiltonian matrices. A test for the negativity of the imaginary part of a corresponding transfer function matrix is first performed by checking for the existence of imaginary eigenvalues of the associated Hamiltonian matrix. In the presence of imaginary eigenvalues, the system is not NI. In such cases, a first-order perturbation is presented for the precise characterization of frequency bands where violations of the NI property occur. This characterization is then used for the design of an iterative perturbation scheme for state matrices aimed at displacing the imaginary eigenvalues of the Hamiltonian matrix away from the imaginary axis.
引用
收藏
页码:3748 / 3752
页数:5
相关论文
共 50 条
  • [31] New perturbation method of diagonalizing the nuclear shell model Hamiltonian
    Shen, J. J.
    Zhao, Y. M.
    Arima, A.
    PHYSICAL REVIEW C, 2012, 85 (06):
  • [32] Entrywise relative perturbation bounds for exponentials of essentially non-negative matrices
    Jungong Xue
    Qiang Ye
    Numerische Mathematik, 2008, 110
  • [34] Entrywise relative perturbation bounds for exponentials of essentially non-negative matrices
    Xue, Jungong
    Ye, Qiang
    NUMERISCHE MATHEMATIK, 2008, 110 (03) : 393 - 403
  • [35] Eigenvalues of model Hamiltonian matrices from spectral density distribution moments: The Heisenberg spin Hamiltonian
    Karwowski, J
    Bielinska-Waz, D
    Jurkowski, J
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 60 (01) : 185 - 193
  • [36] Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach
    Fortunati, Alessandro
    Bacigalupo, Andrea
    Lepidi, Marco
    Arena, Andrea
    Lacarbonara, Walter
    NONLINEAR DYNAMICS, 2022, 108 (02) : 765 - 787
  • [37] Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach
    Alessandro Fortunati
    Andrea Bacigalupo
    Marco Lepidi
    Andrea Arena
    Walter Lacarbonara
    Nonlinear Dynamics, 2022, 108 : 765 - 787
  • [38] H2 model reduction for negative imaginary systems
    Yu, Lanlin
    Xiong, Junlin
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (03) : 588 - 598
  • [39] H∞ Model Reduction for Interval Frequency Negative Imaginary Systems
    Yu, Lanlin
    Xiong, Junlin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (03) : 1116 - 1129
  • [40] Negative imaginary feedback control of satellite orbit dynamical model
    Santosh Kumar Choudhary
    Shreesha Chokkadi
    International Journal of Dynamics and Control, 2024, 12 : 1044 - 1054