Stability of solitary waves in a semiconductor drift-diffusion model

被引:2
|
作者
Cuesta, C. M. [1 ]
Schmeiser, C. [2 ,3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Div Theoret Mech, Nottingham NG7 2RD, England
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Gunn effect; drift-diffusion equation; solitary waves; global constraint;
D O I
10.1137/070690766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a macroscopic (drift-diffusion) model describing a simple microwave generator, consisting of a special type of semiconductor material that, when biased above a certain threshold voltage, generates charge waves. These waves correspond to travelling wave solutions of the model equation which, however, turn out to be unstable in a standard formulation of the travelling wave problem. Here a different formulation of this problem is considered, where an external voltage condition is applied in the form of an integral constraint. Global existence of this novel Cauchy problem is proven and the results of numerical experiments are presented, which suggest the stability of solitary waves. In addition, a small amplitude limit is considered, for which linearized orbital stability of solitary waves can be proven.
引用
收藏
页码:1423 / 1438
页数:16
相关论文
共 50 条
  • [31] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [32] Asymptotic stability of stationary solutions to the drift-diffusion model with the fractional dissipation
    Yuusuke Sugiyama
    Masakazu Yamamoto
    Journal of Evolution Equations, 2021, 21 : 1383 - 1417
  • [33] STABILITY AND INSTABILITY OF SOLUTIONS TO THE DRIFT-DIFFUSION SYSTEM
    Ogawa, Takayoshi
    Wakui, Hiroshi
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (04): : 587 - 597
  • [34] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Tomoko Shimada
    Shinji Odanaka
    Journal of Computational Electronics, 2008, 7 : 485 - 493
  • [35] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Shimada, Tomoko
    Odanaka, Shinji
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 485 - 493
  • [36] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25
  • [37] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [38] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275
  • [39] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazd, Hadi Sadoghi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (11): : 7247 - 7250
  • [40] The bipolar quantum drift-diffusion model
    Chen, Xiu Qing
    Chen, Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (04) : 617 - 638