Stability of solitary waves in a semiconductor drift-diffusion model

被引:2
|
作者
Cuesta, C. M. [1 ]
Schmeiser, C. [2 ,3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Div Theoret Mech, Nottingham NG7 2RD, England
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Gunn effect; drift-diffusion equation; solitary waves; global constraint;
D O I
10.1137/070690766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a macroscopic (drift-diffusion) model describing a simple microwave generator, consisting of a special type of semiconductor material that, when biased above a certain threshold voltage, generates charge waves. These waves correspond to travelling wave solutions of the model equation which, however, turn out to be unstable in a standard formulation of the travelling wave problem. Here a different formulation of this problem is considered, where an external voltage condition is applied in the form of an integral constraint. Global existence of this novel Cauchy problem is proven and the results of numerical experiments are presented, which suggest the stability of solitary waves. In addition, a small amplitude limit is considered, for which linearized orbital stability of solitary waves can be proven.
引用
收藏
页码:1423 / 1438
页数:16
相关论文
共 50 条
  • [21] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model
    Gasser, I
    Levermore, CD
    Markowich, PA
    Schmeiser, C
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 : 497 - 512
  • [22] Asymptotic stability of stationary solutions to the drift-diffusion model with the fractional dissipation
    Sugiyama, Yuusuke
    Yamamoto, Masakazu
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1383 - 1417
  • [23] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [24] On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model
    Brizitskii, R. V.
    Maksimova, N. N.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2025, 35 (01): : 27 - 46
  • [25] ASYMPTOTIC STABILITY OF STATIONARY SOLUTIONS TO THE DRIFT-DIFFUSION MODEL IN THE WHOLE SPACE
    Kobayashi, Ryo
    Yamamoto, Masakazu
    Kawashima, Shuichi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) : 1097 - 1121
  • [26] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529
  • [27] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    LIU YunXian
    SHU Chi-Wang
    Science China(Mathematics), 2016, 59 (01) : 115 - 140
  • [28] A THEORETICALLY ACCURATE MOBILITY MODEL FOR SEMICONDUCTOR-DEVICE DRIFT-DIFFUSION SIMULATION
    VELMRE, E
    UDAL, A
    KOCSIS, T
    MASSZI, F
    PHYSICA SCRIPTA, 1994, 54 : 263 - 267
  • [29] Quantum kinetic and drift-diffusion equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 109 - 113
  • [30] Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (08): : 1253 - 1272