Dispersive spread of virtual sources by asymmetric X-ray monochromators

被引:18
|
作者
Huang, X. R. [1 ]
Macrander, A. T. [1 ]
Honnicke, M. G. [2 ,3 ]
Cai, Y. Q. [2 ]
Fernandez, Patricia [1 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[2] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[3] Univ Fed Goias, BR-75800000 Jatai, Go, Brazil
关键词
SYNCHROTRON-RADIATION; PERFECT CRYSTALS; OPTICAL-ELEMENTS; SCATTERING; RESOLUTION; DIFFRACTION; BEAMS; DIFFRACTOMETER; REFLECTIONS; COHERENCE;
D O I
10.1107/S0021889812003366
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The principles of the virtual source spread (spatial broadening) phenomenon induced by angular dispersion in asymmetric X-ray Bragg reflections are illustrated, from which the virtual source properties are analyzed for typical high-resolution multiple-crystal monochromators, including inline four-bounce dispersive monochromators, back-reflection-dispersion monochromators and nondispersive nested channel-cut monochromators. It is found that dispersive monochromators can produce spread virtual sources of a few millimetres in size, which may prevent efficient microfocusing of the beam as required by inelastic X-ray scattering spectroscopy and other applications. Possible schemes to mitigate this problem are discussed. The analyses may provide important guidelines for designing and optimizing modern high-precision synchrotron X-ray optics and beamline instrumentation for spectroscopy, imaging and nanofocusing applications.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 50 条
  • [41] Novel X-ray optical systems for ultrafast spectroscopy and monochromators
    Erko, Alexei
    Braig, Christoph
    Probst, Jurgen
    Loechel, Heike
    [J]. ADVANCES IN LABORATORY-BASED X-RAY SOURCES, OPTICS, AND APPLICATIONS VII, 2019, 11110
  • [42] INVESTIGATIONS OF CURVED GRAPHITE CRYSTALS FOR THE USE AS X-RAY MONOCHROMATORS
    ARNHOLD, R
    KAUTER, S
    [J]. CRYSTAL RESEARCH AND TECHNOLOGY, 1988, 23 (09) : 1187 - 1192
  • [43] Energy dispersive X-ray diffraction
    Kaempfe, Bernd
    Luczak, Falk
    Michel, Bernd
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2006, 22 (06) : 391 - 396
  • [44] Position dispersive X-ray fluorescence
    Webster J.L.V.
    Mcllquham J.D.
    Ganly B.
    [J]. Radiat. Phys. Chem., 2022,
  • [45] Energy -: Dispersive X-ray diffraction
    Kämpfe, B
    Arnhold, R
    Michel, B
    [J]. APPLIED CRYSTALLIGRAPHY, 2004, : 27 - 30
  • [46] 1D X-ray Beam Compressing Monochromators
    Korytar, D.
    Ferrari, C.
    Mikulik, P.
    Vagovic, P.
    Dobrocka, E.
    Ac, V.
    Konopka, P.
    Erko, A.
    Abrosimov, N.
    Zaprazny, Z.
    [J]. X-RAY OPTICS AND MICROANALYSIS, PROCEEDINGS, 2010, 1221 : 59 - +
  • [47] High heat flux x-ray monochromators: What are the limits?
    Rogers, CS
    [J]. HIGH HEAT FLUX AND SYNCHROTRON RADIATION BEAMLINES, 1997, 3151 : 201 - 207
  • [48] Bonding techniques for the fabrication of internally cooled X-ray monochromators
    Smolenski, KW
    Conolly, C
    Doing, P
    Kiang, B
    Shen, Q
    [J]. HIGH HEAT FLUX ENGINEERING III, 1996, 2855 : 220 - 231
  • [49] PRECISION MOUNTING FOR HIGH-RESOLUTION X-RAY MONOCHROMATORS
    FREY, F
    WEINER, KL
    WIECHERS, KH
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1972, 5 (FEB1) : 55 - &
  • [50] X-ray reflection in a sample of X-ray bright ultraluminous X-ray sources
    Caballero-Garcia, M. D.
    Fabian, A. C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (04) : 2559 - 2566