We study the self-improving properties of generalized Phi-Poincare inequalities in connected metric spaces equipped with a doubling measure. As a consequence we obtain results concerning integrability, continuity and differentiability of Orlicz-Sobolev functions on spaces supporting a Phi-Poincare inequality. Our results are optimal and generalize some of the results of Cianchi [4, 5], Hajlasz and Koskela [9, 10], MacManus and Perez [19], Balogh, Rogovin and Zurcher [2] and Stein [22].
机构:
Tokyo Metropolitan Univ, Dept Math & Informat Sci, Minami Ohsawa 1-1, Hachioji, Tokyo 1920397, JapanTokyo Metropolitan Univ, Dept Math & Informat Sci, Minami Ohsawa 1-1, Hachioji, Tokyo 1920397, Japan
Sawano, Yoshihiro
Shimomura, Tetsu
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, JapanTokyo Metropolitan Univ, Dept Math & Informat Sci, Minami Ohsawa 1-1, Hachioji, Tokyo 1920397, Japan
机构:
Nagasakihokuyodai High Sch, Nagasaki 8512127, JapanNagasakihokuyodai High Sch, Nagasaki 8512127, Japan
Hashimoto, Daiki
Sawano, Yoshihiro
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, JapanNagasakihokuyodai High Sch, Nagasaki 8512127, Japan
Sawano, Yoshihiro
Shimomura, Tetsu
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, JapanNagasakihokuyodai High Sch, Nagasaki 8512127, Japan