Using horizon estimation and nonlinear optimization for grey-box identification

被引:9
|
作者
Isaksson, Alf J. [1 ,2 ]
Sjoberg, Johan [2 ,3 ]
Tornqvist, David [4 ]
Ljung, Lennart [2 ]
Kok, Manon [2 ]
机构
[1] Corp Res, ABB AB, SE-72178 Vasteras, Sweden
[2] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
[3] Volvo Construct Equipment, SE-63185 Eskilstuna, Sweden
[4] SenionLab AB, S-58330 Linkoping, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
System identification; State estimation; Parameter estimation; Optimization; Nonlinear systems; Kalman filtering; Moving horizon estimation; Model predictive control; STATE ESTIMATION; PARAMETER; ALGORITHM;
D O I
10.1016/j.jprocont.2014.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An established method for grey-box identification is to use maximum-likelihood estimation for the nonlinear case implemented via extended Kalman filtering. In applications of (nonlinear) model predictive control a more and more common approach for the state estimation is to use moving horizon estimation, which employs (nonlinear) optimization directly on a model for a whole batch of data. This paper shows that, in the linear case, horizon estimation may also be used for joint parameter estimation and state estimation, as long as a bias correction based on the Kalman filter is included. For the nonlinear case two special cases are presented where the bias correction can be determined without approximation. A procedure how to approximate the bias correction for general nonlinear systems is also outlined. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [1] Nonlinear grey-box identification of linear actuators containing hysteresis
    Gunnar, Johan
    Wernholt, Erik
    Hovland, Geir
    Brogardh, Torgny
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 1818 - 1823
  • [2] Nonlinear Grey-Box Identification with Inflow Decoupling in Gravity Sewers
    Balla, Krisztian Mark
    Kallesoe, Carsten Skovmose
    Schou, Christian
    Bendtsen, Jan Dimon
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1065 - 1070
  • [3] Grey-box identification of a TMP refiner
    Allison, BJ
    Isaksson, AJ
    Karlstrom, A
    [J]. PULP & PAPER-CANADA, 1997, 98 (04) : 50 - 53
  • [4] Grey-box identification of the continuous digester
    Funkquist, J
    [J]. CONTROL SYSTEMS '96, PREPRINTS, 1996, : 147 - 152
  • [5] Grey-box state-space identification of nonlinear mechanical vibrations
    Noel, J. P.
    Schoukens, J.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (05) : 1118 - 1139
  • [6] Grey-box identification of the continuous digester
    Funkquist, J
    [J]. PULP & PAPER-CANADA, 1997, 98 (11) : 32 - 36
  • [7] Identification of a grey-box model of nonlinear current transformers for simulation purposes
    Lorito, F
    [J]. CONTROL ENGINEERING PRACTICE, 1998, 6 (11) : 1331 - 1339
  • [8] Parameter estimation in stochastic grey-box models
    Kristensen, NR
    Madsen, H
    Jorgensen, SB
    [J]. AUTOMATICA, 2004, 40 (02) : 225 - 237
  • [9] DERIVATION OF A DESIGNER GUIDE FOR INTERACTIVE GREY-BOX IDENTIFICATION OF NONLINEAR STOCHASTIC OBJECTS
    BOHLIN, T
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (06) : 1505 - 1524
  • [10] A grey-box identification of an LPV vehicle model with side slip angle estimation
    Gaspar, Peter
    Szabo, Zoltan
    Bokor, Jozsef
    [J]. 2007 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2007, : 713 - 718