Parameter estimation in stochastic grey-box models

被引:231
|
作者
Kristensen, NR [1 ]
Madsen, H [1 ]
Jorgensen, SB [1 ]
机构
[1] Tech Univ Denmark, Dept Chem Engn, DK-2800 Lyngby, Denmark
关键词
grey-box models; parameter estimation; stochastic differential equations; maximum likelihood estimation; extended Kalman filter; estimation with missing observations; robust estimation; estimation accuracy; software tools;
D O I
10.1016/j.automatica.2003.10.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 50 条
  • [1] Parameter estimation for grey-box models of building thermal behaviour
    Brastein, O. M.
    Perera, D. W. U.
    Pfeifer, C.
    Skeie, N. O.
    ENERGY AND BUILDINGS, 2018, 169 : 58 - 68
  • [2] A method for systematic improvement of stochastic grey-box models
    Kristensen, NR
    Madsen, H
    Jorgensen, SB
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1431 - 1449
  • [3] Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models
    Brastein, O. M.
    Ghaderi, A.
    Pfeiffer, C. F.
    Skeie, N-O
    ENERGY AND BUILDINGS, 2020, 224
  • [4] Grey-Box Modelling and Parameter Estimation of Switched Reluctance Motors
    Naitali, A.
    Aamoud, A.
    Hammouch, A.
    2014 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2014, : 352 - 357
  • [5] Grey-box models: Concepts and application
    Kroll, A
    NEW FRONTIERS IN COMPUTATIONAL INTELLIGENCE AND ITS APPLICATIONS, 2000, 57 : 42 - 51
  • [6] Grey-box models for wave loading prediction
    Pitchforth, D. J.
    Rogers, T. J.
    Tygesen, U. T.
    Cross, E. J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 159
  • [7] Grey-box Extraction of Natural Language Models
    Zanella-Beguelin, Santiago
    Tople, Shruti
    Paverd, Andrew
    Koepf, Boris
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [8] Grey-box models and their application to a steel mill
    Kroll, A
    COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 340 - 345
  • [9] DEVELOPING GREY-BOX DYNAMIC PROCESS MODELS
    de Prada, C.
    Hose, D.
    Gutierrez, G.
    Pitarch, J. L.
    IFAC PAPERSONLINE, 2018, 51 (02): : 523 - 528
  • [10] Convex parameter estimator for grey-box models, applied to characterise heat flows in greenhouses
    De Ridder, Fjo
    van Roy, Jeroen
    Vanlommel, Wendy
    Van Calenberge, Bart
    Vliex, Maarten
    De Win, Jonas
    De Schutter, Bert
    Binnemans, Simon
    De Pauw, Margot
    BIOSYSTEMS ENGINEERING, 2020, 191 : 13 - 26