Using horizon estimation and nonlinear optimization for grey-box identification

被引:9
|
作者
Isaksson, Alf J. [1 ,2 ]
Sjoberg, Johan [2 ,3 ]
Tornqvist, David [4 ]
Ljung, Lennart [2 ]
Kok, Manon [2 ]
机构
[1] Corp Res, ABB AB, SE-72178 Vasteras, Sweden
[2] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
[3] Volvo Construct Equipment, SE-63185 Eskilstuna, Sweden
[4] SenionLab AB, S-58330 Linkoping, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
System identification; State estimation; Parameter estimation; Optimization; Nonlinear systems; Kalman filtering; Moving horizon estimation; Model predictive control; STATE ESTIMATION; PARAMETER; ALGORITHM;
D O I
10.1016/j.jprocont.2014.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An established method for grey-box identification is to use maximum-likelihood estimation for the nonlinear case implemented via extended Kalman filtering. In applications of (nonlinear) model predictive control a more and more common approach for the state estimation is to use moving horizon estimation, which employs (nonlinear) optimization directly on a model for a whole batch of data. This paper shows that, in the linear case, horizon estimation may also be used for joint parameter estimation and state estimation, as long as a bias correction based on the Kalman filter is included. For the nonlinear case two special cases are presented where the bias correction can be determined without approximation. A procedure how to approximate the bias correction for general nonlinear systems is also outlined. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [31] MultiObjective Evolutionary Approach to Grey-Box Identification of Buck Converter
    Hafiz, Faizal
    Swain, Akshya
    Mendes, Eduardo M. A. M.
    Aguirre, Luis A.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (06) : 2016 - 2028
  • [32] ESTIMATION OF FEEDWATER HEATER PARAMETERS BASED ON A GREY-BOX APPROACH
    Barszcz, Tomasz
    Czop, Piotr
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2011, 21 (04) : 703 - 715
  • [33] Grey-box identification of air-handling unit elements
    Ghiaus, Christian
    Chicinas, Adriana
    Inard, Christian
    [J]. CONTROL ENGINEERING PRACTICE, 2007, 15 (04) : 421 - 433
  • [34] Cash Flow Prediction Using a Grey-Box Model
    Pang, Yang
    Opong, Kwaku
    Moutinho, Luiz
    Li, Yun
    [J]. 2015 21ST INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2015, : 371 - 376
  • [35] Grey-box techniques for the identification of a controlled gene expression model
    Parise, Francesca
    Ruess, Jakob
    Lygeros, John
    [J]. 2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 1498 - 1503
  • [36] Black-Box versus Grey-Box LPV Identification to Control a Mechanical System
    El-Dine, Christian Paraiso Salah
    Hashemi, Seyed Mahdi
    Werner, Herbert
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5152 - 5157
  • [37] A grey-box model identification of an advanced oxidation process for wastewater treatment
    Abouzlam, Manhal
    Ouvrard, Regis
    Poinot, Thierry
    Mehdi, Driss
    Pontlevoy, Florence
    Gombert, Bertrand
    Leitner, Nathalie Karpel Vel
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 556 - 561
  • [38] A grey-box identification of an LPV vehicle model for observer-based side slip angle estimation
    Gaspar, Peter
    Szabo, Zoltan
    Bokor, Jozsef
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 2942 - 2947
  • [39] ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems
    Fani Boukouvala
    Christodoulos A. Floudas
    [J]. Optimization Letters, 2017, 11 : 895 - 913
  • [40] Optimal design of energy systems using constrained grey-box multi-objective optimization
    Beykal, Burcu
    Boukouvala, Fani
    Floudas, Christodoulos A.
    Pistikopoulos, Efstratios N.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 116 : 488 - 502