Boosting Monocular Depth with Panoptic Segmentation Maps

被引:10
|
作者
Saeedan, Faraz [1 ]
Roth, Stefan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
关键词
D O I
10.1109/WACV48630.2021.00390
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth prediction is ill-posed by nature; hence successful approaches need to exploit the available cues to the fullest. Yet, real-world training data with depth ground-truth suffers from limited variability and data acquired from depth sensors is also sparse and prone to noise. While available datasets with semantic annotations might help to better exploit semantic cues, they are not immediately usable for depth prediction. We show how to leverage panoptic segmentation maps to boost monocular depth predictors in stereo training setups. In particular, we augment a self-supervised training scheme through panoptic-guided smoothing, panoptic-guided alignment, and panoptic left-right consistency from ground truth or inferred panoptic segmentation maps. Our approach incurs only a minor overhead, can easily be applied to a wide range of depth estimation methods that are trained at least partially using stereo pairs, providing a substantial boost in accuracy.
引用
收藏
页码:3852 / 3861
页数:10
相关论文
共 50 条
  • [41] Panoptic SwiftNet: Pyramidal Fusion for Real-Time Panoptic Segmentation
    Saric, Josip
    Orsic, Marin
    Segvic, Sinisa
    REMOTE SENSING, 2023, 15 (08)
  • [42] Part-aware Panoptic Segmentation
    de Geus, Daan
    Meletis, Panagiotis
    Lu, Chenyang
    Wen, Xiaoxiao
    Dubbelman, Gijs
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5481 - 5490
  • [43] Single-Shot Panoptic Segmentation
    Weber, Mark
    Luiten, Jonathon
    Leibe, Bastian
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8476 - 8483
  • [44] Sparse-to-Continuous: Enhancing Monocular Depth Estimation using Occupancy Maps
    Rosa, Nicolas dos Santos
    Guizilini, Vitor
    Grassi Jr, Valdir
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 793 - 800
  • [45] Improving Panoptic Segmentation at All Scales
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Kontschieder, Peter
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7298 - 7307
  • [46] Panoptic Segmentation with Convex Object Representation
    Yao, Zhicheng
    Wang, Sa
    Zhu, Jinbin
    Bao, Yungang
    COMPUTER JOURNAL, 2023, 67 (06): : 2009 - 2019
  • [47] Panoptic Segmentation Meets Remote Sensing
    de Carvalho, Osmar Luiz Ferreira
    de Carvalho Junior, Osmar Abilio
    Silva, Cristiano Rosa e
    de Albuquerque, Anesmar Olino
    Santana, Nickolas Castro
    Borges, Dibio Leandro
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    REMOTE SENSING, 2022, 14 (04)
  • [48] Unifying Panoptic Segmentation for Autonomous Driving
    Zendel, Oliver
    Schoerghuber, Matthias
    Rainer, Bernhard
    Murschitz, Markus
    Beleznai, Csaba
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21319 - 21328
  • [49] Pointly-Supervised Panoptic Segmentation
    Fan, Junsong
    Zhang, Zhaoxiang
    Tan, Tieniu
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 319 - 336
  • [50] Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation
    Borse, Shubhankar
    Park, Hyojin
    Cai, Hong
    Das, Debasmit
    Garrepalli, Risheek
    Porikli, Fatih
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1259 - 1269