Boosting Monocular Depth with Panoptic Segmentation Maps

被引:10
|
作者
Saeedan, Faraz [1 ]
Roth, Stefan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
关键词
D O I
10.1109/WACV48630.2021.00390
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth prediction is ill-posed by nature; hence successful approaches need to exploit the available cues to the fullest. Yet, real-world training data with depth ground-truth suffers from limited variability and data acquired from depth sensors is also sparse and prone to noise. While available datasets with semantic annotations might help to better exploit semantic cues, they are not immediately usable for depth prediction. We show how to leverage panoptic segmentation maps to boost monocular depth predictors in stereo training setups. In particular, we augment a self-supervised training scheme through panoptic-guided smoothing, panoptic-guided alignment, and panoptic left-right consistency from ground truth or inferred panoptic segmentation maps. Our approach incurs only a minor overhead, can easily be applied to a wide range of depth estimation methods that are trained at least partially using stereo pairs, providing a substantial boost in accuracy.
引用
收藏
页码:3852 / 3861
页数:10
相关论文
共 50 条
  • [21] Depth estimation of supervised monocular images based on semantic segmentation
    Wang, Qi
    Piao, Yan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [22] Uni-DVPS: Unified Model for Depth-Aware Video Panoptic Segmentation
    Ji-Yeon, Kim
    Hyun-Bin, Oh
    Byung-Ki, Kwon
    Kim, Dahun
    Kwon, Yongjin
    Oh, Tae-Hyun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6186 - 6193
  • [23] A Survey of Panoptic Segmentation Methods
    Xu P.-B.
    Qu A.-G.
    Wang K.-F.
    Li D.-Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (03): : 549 - 568
  • [24] Fast Panoptic Segmentation Network
    de Geus, Daan
    Meletis, Panagiotis
    Dubbelman, Gijs
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 1742 - 1749
  • [25] EfficientPS: Efficient Panoptic Segmentation
    Rohit Mohan
    Abhinav Valada
    International Journal of Computer Vision, 2021, 129 : 1551 - 1579
  • [26] BINOBOOST: BOOSTING SELF-SUPERVISED MONOCULAR DEPTH PREDICTION WITH BINOCULAR GUIDANCE
    Xiong, Xin
    Cao, Zhiguo
    Zhang, Chao
    Xian, Ke
    Zou, Hongwei
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1770 - 1774
  • [27] DaRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation
    Song, Jiuhn
    Park, Seonghoon
    An, Honggyu
    Cho, Seokju
    Kwak, Min-Seop
    Cho, Sungjin
    Kim, Seungryong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] EfficientPS: Efficient Panoptic Segmentation
    Mohan, Rohit
    Valada, Abhinav
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (05) : 1551 - 1579
  • [29] Boosting Monocular Depth Estimation with Lightweight 3D Point Fusion
    Huynh, Lam
    Phong Nguyen
    Matas, Jiri
    Rahtu, Esa
    Heikkila, Janne
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12747 - 12756
  • [30] Panoptic Segmentation of Animal Fibers
    Rippel, Oliver
    Schoenfelder, Nikolaj
    Rahimi, Khosrow
    Kurniadi, Juliana
    Herrmann, Andreas
    Merhof, Dorit
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,