A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia

被引:15
|
作者
Wang, Guan [1 ,2 ]
Zhang, Yanbo [3 ]
Li, Sijin [4 ]
Zhang, Jun [1 ]
Jiang, Dongkui [2 ]
Li, Xiuzhen [2 ]
Li, Yulin [1 ]
Du, Jie [1 ]
机构
[1] Capital Med Univ, Beijing Inst Heart Lung & Blood Vessel Dis, Key Lab Remodeling Related Cardiovasc Dis, Beijing Anzhen Hosp,Minist Educ, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Affiliated Hosp 3, Beijing, Peoples R China
[3] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Shanxi Key Lab Major Dis Risk Assessment, Taiyuan, Peoples R China
[4] Shanxi Med Univ, Hosp Shanxi Med Univ 1, Mol Imaging Precis Med Collaborat Innovat Ctr, Taiyuan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
preeclampsia; hypertension; cardiovascular disease; machine learning; prediction; model; CORONARY-ARTERY-DISEASE; HYPERTENSIVE DISORDERS; PREGNANCY; FUTURE; CLASSIFICATION; MANAGEMENT; DIAGNOSIS; MORTALITY;
D O I
10.3389/fcvm.2021.736491
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Preeclampsia affects 2-8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women. Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set. Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697-0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis. Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study
    Vasilache, Ingrid-Andrada
    Scripcariu, Ioana-Sadyie
    Doroftei, Bogdan
    Bernad, Robert Leonard
    Carauleanu, Alexandru
    Socolov, Demetra
    Melinte-Popescu, Alina-Sinziana
    Vicoveanu, Petronela
    Harabor, Valeriu
    Mihalceanu, Elena
    Melinte-Popescu, Marian
    Harabor, Anamaria
    Bernad, Elena
    Nemescu, Dragos
    DIAGNOSTICS, 2024, 14 (04)
  • [42] Using machine learning-based algorithms to construct cardiovascular risk prediction models for Taiwanese adults based on traditional and novel risk factors
    Cheng, Chien-Hsiang
    Lee, Bor-Jen
    Nfor, Oswald Ndi
    Hsiao, Chih-Hsuan
    Huang, Yi-Chia
    Liaw, Yung-Po
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [43] A Machine Learning-Based Fall Risk Assessment Model for Inpatients
    Liu, Chia-Hui
    Hu, Ya-Han
    Lin, Yu-Hsiu
    CIN-COMPUTERS INFORMATICS NURSING, 2021, 39 (08) : 450 - 459
  • [44] Machine Learning-Based Risk Model for Pipeline Integrity Management
    Zhang, Xiaoyue
    Tao, Chengcheng
    Huang, Ying
    COMPUTING IN CIVIL ENGINEERING 2023-RESILIENCE, SAFETY, AND SUSTAINABILITY, 2024, : 689 - 696
  • [45] Machine-learning model for the prediction of preeclampsia - a step toward personalized risk assessment
    Shtar, Guy
    Rokach, Lior
    Novack, Victor
    Novack, Lena
    Than, Gabor
    Laivouri, Hannele
    Farina, Antonio
    Hadar, Amnon G.
    Erez, Ofer
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S171 - S171
  • [46] CARDIOVASCULAR RISK PREDICTION APPLYING MACHINE LEARNING
    Castel, S.
    Maldonado, L.
    Aguilar, I.
    Malo, S.
    Rabanaque, M. J.
    GACETA SANITARIA, 2023, 37 : S204 - S204
  • [47] CARDIOVASCULAR RISK IN WOMEN WITH PREECLAMPSIA
    Habek, Jasna Cerkez
    Bobic, Mirna Vukovic
    Habek, Dubravko
    Gulin, Sandra Jerkovic
    Gulin, Dario
    ACTA CLINICA CROATICA, 2022, 61 (04) : 574 - 580
  • [48] Machine learning-based prediction model and visual interpretation for prostate cancer
    Gang Chen
    Xuchao Dai
    Mengqi Zhang
    Zhujun Tian
    Xueke Jin
    Kun Mei
    Hong Huang
    Zhigang Wu
    BMC Urology, 23
  • [49] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [50] Development and application of a machine learning-based antenatal depression prediction model
    Hu, Chunfei
    Lin, Hongmei
    Xu, Yupin
    Fu, Xukun
    Qiu, Xiaojing
    Hu, Siqian
    Jin, Tong
    Xu, Hualin
    Luo, Qiong
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 375 : 137 - 147