Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:4
|
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prediction of Preeclampsia and Intrauterine Growth Restriction: Development of Machine Learning Models on a Prospective Cohort
    Sufriyana, Herdiantri
    Wu, Yu-Wei
    Su, Emily Chia-Yu
    [J]. JMIR MEDICAL INFORMATICS, 2020, 8 (05)
  • [2] A Machine Learning-Based Intrauterine Growth Restriction (IUGR) Prediction Model for Newborns
    Deval, Ravi
    Saxena, Pallavi
    Pradhan, Dibyabhaba
    Mishra, Ashwani Kumar
    Jain, Arun Kumar
    [J]. INDIAN JOURNAL OF PEDIATRICS, 2022, 89 (11): : 1140 - 1143
  • [3] Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
    Taeidi, Elham
    Ranjbar, Amene
    Montazeri, Farideh
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [4] Predictive Performance of Machine Learning-Based Methods for the Prediction of Preeclampsia-A Prospective Study
    Melinte-Popescu, Alina-Sinziana
    Vasilache, Ingrid-Andrada
    Socolov, Demetra
    Melinte-Popescu, Marian
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (02)
  • [5] A Machine Learning–Based Intrauterine Growth Restriction (IUGR) Prediction Model for Newborns
    Ravi Deval
    Pallavi Saxena
    Dibyabhaba Pradhan
    Ashwani Kumar Mishra
    Arun Kumar Jain
    [J]. Indian Journal of Pediatrics, 2022, 89 : 1140 - 1143
  • [6] Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction
    Tjoa, ML
    Oudejans, CBM
    van Vugt, JMG
    Blankenstein, MA
    van Wijk, IJ
    [J]. HYPERTENSION IN PREGNANCY, 2004, 23 (02) : 171 - 189
  • [7] PREDICTION OF FETAL GROWTH RESTRICTION IN ASIAN WOMEN USING MACHINE LEARNING ALGORITHMS
    Kang, Byung Soo
    Kim, Oyoung
    Won, Sang Eun
    Wie, Jeong Ha
    Jo, Yun Sung
    Shin, Jae Eun
    Kim, Sumi
    Choi, Sae Kyung
    Kim, Yeon Hee
    Hong, Subeen
    Ko, Hyun Sun
    [J]. PLACENTA, 2023, 140 : E83 - E84
  • [8] Cohort Profile: Prediction and prevention of preeclampsia and intrauterine growth restriction (PREDO) study
    Girchenko, Polina
    Lahti, Marius
    Tuovinen, Soile
    Savolainen, Katri
    Lahti, Jari
    Binder, Elisabeth B.
    Reynolds, Rebecca M.
    Entringer, Sonja
    Buss, Claudia
    Wadhwa, Pathik D.
    Hamalainen, Esa
    Kajantie, Eero
    Pesonen, Anu-Katriina
    Villa, Pia M.
    Laivuorillt, Hannele
    Raikkonen, Katri
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2017, 46 (05) : 1380 - +
  • [9] Development of a prediction model on preeclampsia using machine learning-based method: a retrospective cohort study in China
    Liu, Mengyuan
    Yang, Xiaofeng
    Chen, Guolu
    Ding, Yuzhen
    Shi, Meiting
    Sun, Lu
    Huang, Zhengrui
    Liu, Jia
    Liu, Tong
    Yan, Ruiling
    Li, Ruiman
    [J]. FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [10] A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia
    Wang, Guan
    Zhang, Yanbo
    Li, Sijin
    Zhang, Jun
    Jiang, Dongkui
    Li, Xiuzhen
    Li, Yulin
    Du, Jie
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8