Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study

被引:4
|
作者
Vasilache, Ingrid-Andrada [1 ]
Scripcariu, Ioana-Sadyie [1 ]
Doroftei, Bogdan [1 ]
Bernad, Robert Leonard [2 ]
Carauleanu, Alexandru [1 ]
Socolov, Demetra [1 ]
Melinte-Popescu, Alina-Sinziana [3 ]
Vicoveanu, Petronela [1 ]
Harabor, Valeriu [3 ]
Mihalceanu, Elena [1 ]
Melinte-Popescu, Marian [4 ,5 ]
Harabor, Anamaria [3 ]
Bernad, Elena [3 ,6 ]
Nemescu, Dragos [1 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Mother & Child Care, Iasi 700115, Romania
[2] Politech Univ Timisoara, Fac Comp Sci, Timisoara 300006, Romania
[3] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Mother & Newborn Care, Suceava 720229, Romania
[4] Univ Galatzi, Fac Med & Pharm, Clin & Surg Dept, Galati 800216, Romania
[5] Stefan Cel Mare Univ, Fac Med & Biol Sci, Dept Internal Med, Suceava 720229, Romania
[6] Victor Babes Univ Med & Pharm, Fac Med, Dept Obstet Gynecol 2, Timisoara 300041, Romania
关键词
preeclampsia; intrauterine growth restriction; prediction; machine learning; screening; MANAGEMENT; DIAGNOSIS; CONSENSUS;
D O I
10.3390/diagnostics14040453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
(1) Background: Prenatal care providers face a continuous challenge in screening for intrauterine growth restriction (IUGR) and preeclampsia (PE). In this study, we aimed to assess and compare the predictive accuracy of four machine learning algorithms in predicting the occurrence of PE, IUGR, and their associations in a group of singleton pregnancies; (2) Methods: This observational prospective study included 210 singleton pregnancies that underwent first trimester screenings at our institution. We computed the predictive performance of four machine learning-based methods, namely decision tree (DT), naive Bayes (NB), support vector machine (SVM), and random forest (RF), by incorporating clinical and paraclinical data; (3) Results: The RF algorithm showed superior performance for the prediction of PE (accuracy: 96.3%), IUGR (accuracy: 95.9%), and its subtypes (early onset IUGR, accuracy: 96.2%, and late-onset IUGR, accuracy: 95.2%), as well as their association (accuracy: 95.1%). Both SVM and NB similarly predicted IUGR (accuracy: 95.3%), while SVM outperformed NB (accuracy: 95.8 vs. 94.7%) in predicting PE; (4) Conclusions: The integration of machine learning-based algorithms in the first-trimester screening of PE and IUGR could improve the overall detection rate of these disorders, but this hypothesis should be confirmed in larger cohorts of pregnant patients from various geographical areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    [J]. TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [22] First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction
    Zhong, Yan
    Tuuli, Methodius
    Odibo, Anthony O.
    [J]. PRENATAL DIAGNOSIS, 2010, 30 (04) : 293 - 308
  • [23] Machine learning-based prediction of response to growth hormone treatment in Turner syndrome: the LG Growth Study
    Jung, Mo Kyung
    Yu, Jeesuk
    Lee, Ji-Eun
    Kim, Se Young
    Kim, Hae Soon
    Yoo, Eun-Gyong
    [J]. JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM, 2020, 33 (01): : 71 - 78
  • [24] Machine Learning-Based Precipitation Prediction Using Cloud Properties
    Yakubu, Abdulaziz Tunde
    Abayomi, Abdultaofeek
    Chetty, Naven
    [J]. HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 243 - 252
  • [25] Prediction model of preeclampsia using machine learning based methods: a population based cohort study in China
    Li, Taishun
    Xu, Mingyang
    Wang, Yuan
    Wang, Ya
    Tang, Huirong
    Duan, Honglei
    Zhao, Guangfeng
    Zheng, Mingming
    Hu, Yali
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [26] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    [J]. Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831
  • [27] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    [J]. PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369
  • [28] Machine learning-based prediction of breast cancer growth rate in vivo
    Shristi Bhattarai
    Sergey Klimov
    Mohammed A. Aleskandarany
    Helen Burrell
    Anthony Wormall
    Andrew R. Green
    Padmashree Rida
    Ian O. Ellis
    Remus M. Osan
    Emad A. Rakha
    Ritu Aneja
    [J]. British Journal of Cancer, 2019, 121 : 497 - 504
  • [29] Machine learning-based prediction of breast cancer growth rate in vivo
    Bhattarai, Shristi
    Klimov, Sergey
    Aleskandarany, Mohammed A.
    Burrell, Helen
    Wormall, Anthony
    Green, Andrew R.
    Rida, Padmashree
    Ellis, Ian O.
    Osan, Remus M.
    Rakha, Emad A.
    Aneja, Ritu
    [J]. BRITISH JOURNAL OF CANCER, 2019, 121 (06) : 497 - 504
  • [30] Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study
    Raia-Barjat, Tiphaine
    Prieux, Carole
    Gris, Jean-Christophe
    Chapelle, Celine
    Laporte, Silvy
    Chauleur, Celine
    [J]. JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2019, 32 (02): : 248 - 257