A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia

被引:15
|
作者
Wang, Guan [1 ,2 ]
Zhang, Yanbo [3 ]
Li, Sijin [4 ]
Zhang, Jun [1 ]
Jiang, Dongkui [2 ]
Li, Xiuzhen [2 ]
Li, Yulin [1 ]
Du, Jie [1 ]
机构
[1] Capital Med Univ, Beijing Inst Heart Lung & Blood Vessel Dis, Key Lab Remodeling Related Cardiovasc Dis, Beijing Anzhen Hosp,Minist Educ, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Affiliated Hosp 3, Beijing, Peoples R China
[3] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Shanxi Key Lab Major Dis Risk Assessment, Taiyuan, Peoples R China
[4] Shanxi Med Univ, Hosp Shanxi Med Univ 1, Mol Imaging Precis Med Collaborat Innovat Ctr, Taiyuan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
preeclampsia; hypertension; cardiovascular disease; machine learning; prediction; model; CORONARY-ARTERY-DISEASE; HYPERTENSIVE DISORDERS; PREGNANCY; FUTURE; CLASSIFICATION; MANAGEMENT; DIAGNOSIS; MORTALITY;
D O I
10.3389/fcvm.2021.736491
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Preeclampsia affects 2-8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women. Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set. Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697-0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis. Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Explainable Machine Learning-Based Prediction Model for Diabetic Nephropathy
    Yin, Jing-Mei
    Li, Yang
    Xue, Jun-Tang
    Zong, Guo-Wei
    Fang, Zhong-Ze
    Zou, Lang
    JOURNAL OF DIABETES RESEARCH, 2024, 2024
  • [32] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [33] Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure
    Misumi, Kayo
    Matsue, Yuya
    Nogi, Kazutaka
    Fujimoto, Yudai
    Kagiyama, Nobuyuki
    Kasai, Takatoshi
    Kitai, Takeshi
    Oishi, Shogo
    Akiyama, Eiichi
    Suzuki, Satoshi
    Yamamoto, Masayoshi
    Kida, Keisuke
    Okumura, Takahiro
    Nogi, Maki
    Ishihara, Satomi
    Ueda, Tomoya
    Kawakami, Rika
    Saito, Yoshihiko
    Minamino, Tohru
    JOURNAL OF CARDIOLOGY, 2023, 81 (06) : 531 - 536
  • [34] Enhancing machine learning-based survival prediction models for patients with cardiovascular diseases
    Rastogi, Tripti
    Girerd, Nicolas
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 410
  • [35] Machine learning-based models for the prediction of breast cancer recurrence risk
    Zuo, Duo
    Yang, Lexin
    Jin, Yu
    Qi, Huan
    Liu, Yahui
    Ren, Li
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [36] Clinical evaluation of a machine learning-based dysphagia risk prediction tool
    Gugatschka, Markus
    Egger, Nina Maria
    Haspl, K.
    Hortobagyi, David
    Jauk, Stefanie
    Feiner, Marlies
    Kramer, Diether
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (08) : 4379 - 4384
  • [37] Monitoring machine learning-based risk prediction algorithms in the presence of performativity
    Feng, Jean
    Petrick, Nicholas
    Gossmann, Alexej
    Sahiner, Berkman
    Pennello, Gene
    Pirracchio, Romain
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [38] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    BMC Medical Informatics and Decision Making, 23
  • [39] SecRiskAI: a Machine Learning-Based Approach for Cybersecurity Risk Prediction in Businesses
    Franco, Muriel F.
    Sula, Erion
    Huertas, Alberto
    Scheid, Eder J.
    Granville, Lisandro Z.
    Stiller, Burkhard
    2022 IEEE 24TH CONFERENCE ON BUSINESS INFORMATICS (CBI 2022), VOL 1, 2022, : 1 - 10
  • [40] Machine learning-based clinical decision support for infection risk prediction
    Feng, Ting
    Noren, David P.
    Kulkarni, Chaitanya
    Mariani, Sara
    Zhao, Claire
    Ghosh, Erina
    Swearingen, Dennis
    Frassica, Joseph
    McFarlane, Daniel
    Conroy, Bryan
    FRONTIERS IN MEDICINE, 2023, 10