Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure

被引:3
|
作者
Misumi, Kayo [1 ,2 ,3 ]
Matsue, Yuya [3 ,18 ]
Nogi, Kazutaka [4 ]
Fujimoto, Yudai [5 ]
Kagiyama, Nobuyuki [3 ,6 ,7 ]
Kasai, Takatoshi [3 ,8 ]
Kitai, Takeshi [9 ,10 ]
Oishi, Shogo [11 ]
Akiyama, Eiichi [12 ]
Suzuki, Satoshi [13 ]
Yamamoto, Masayoshi [14 ]
Kida, Keisuke [15 ]
Okumura, Takahiro [16 ]
Nogi, Maki [4 ]
Ishihara, Satomi [4 ]
Ueda, Tomoya [4 ]
Kawakami, Rika [4 ]
Saito, Yoshihiko [4 ]
Minamino, Tohru [3 ,17 ]
机构
[1] Saiseikai Utsunomiya Hosp, Dept Cardiol, Utsunomiya, Japan
[2] Saiseikai Utsunomiya Hosp, Dept Crit Care, Utsunomiya, Japan
[3] Juntendo Univ, Grad Sch Med, Dept Cardiovasc Biol & Med, Tokyo, Japan
[4] Nara Med Univ, Dept Cardiovasc Med, Kashihara, Japan
[5] Jichi Med Univ, Saitama Med Ctr, Dept Cardiovasc Med, Saitama, Japan
[6] Juntendo Univ, Dept Digital Hlth & Telemed R&D, Tokyo, Japan
[7] Sakakibara Heart Inst Okayama, Dept Cardiol, Okayama, Japan
[8] Juntendo Univ, Grad Sch Med, Cardiovasc Resp Sleep Med, Tokyo, Japan
[9] Kobe City Med Ctr, Gen Hosp, Dept Cardiovasc Med, Kobe, Japan
[10] Natl Cerebral & Cardiovasc Ctr, Dept Cardiovasc Med, Suita, Japan
[11] Hyogo Prefectural Harima Himeji Gen Med Ctr, Dept Cardiogoly, Himeji, Japan
[12] Yokohama City Univ, Div Cardiol, Med Ctr, Yokohama, Japan
[13] Fukushima Med Univ, Dept Cardiovasc Med, Fukushima, Japan
[14] Univ Tsukuba, Fac Med, Cardiovasc Div, Tsukuba, Japan
[15] St Marianna Univ, Dept Pharmacol, Sch Med, Kawasaki, Japan
[16] Nagoya Univ, Dept Cardiol, Grad Sch Med, Nagoya, Japan
[17] Japan Agcy Med Res & Dev, Core Res Evolutionary Med Sci & Technol AMED CREST, Tokyo, Japan
[18] Juntendo Univ, Dept Cardiovasc Biol & Med, Grad Sch Med, 2-1-1 Hongo,Bunkyo Ku, Tokyo 1138421, Japan
关键词
Acute heart failure; Chloride; Risk model; Prediction; IN-HOSPITAL MORTALITY; INTRAVENOUS MILRINONE; PROSPECTIVE TRIAL; BLOOD-PRESSURE; ADMISSION; SURVIVAL; OUTCOMES; EXACERBATIONS; GUIDELINES; MANAGEMENT;
D O I
10.1016/j.jjcc.2023.02.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Risk stratification is important in patients with acute heart failure (AHF), and a simple risk score that accurately predicts mortality is needed. The aim of this study is to develop a user-friendly risk-prediction model using a machine-learning method. Methods: A machine-learning-based risk model using least absolute shrinkage and selection operator (LASSO) regression was developed by identifying predictors of in-hospital mortality in the derivation cohort (REALITY-AHF), and its performance was externally validated in the validation cohort (NARA-HF) and compared with two preexisting risk models: the Get With The Guidelines risk score incorporating brain natriuretic peptide and hypochloremia (GWTG-BNP-Cl-RS) and the acute decompensated heart failure national registry risk (ADHERE).Results: In-hospital deaths in the derivation and validation cohorts were 76 (5.1 %) and 61 (4.9 %), respectively. The risk score comprised four variables (systolic blood pressure, blood urea nitrogen, serum chloride, and C-reactive protein) and was developed according to the results of the LASSO regression weighting the coefficient for selected variables using a logistic regression model (4 V-RS). Even though 4 V-RS comprised fewer variables, in the validation cohort, it showed a higher area under the receiver operating characteristic curve (AUC) than the ADHERE risk model (AUC, 0.783 vs. 0.740; p = 0.059) and a significant improvement in net reclassification (0.359; 95 % CI, 0.10-0.67; p = 0.006). 4 V-RS performed similarly to GWTG-BNP-Cl-RS in terms of discrimination (AUC, 0.783 vs. 0.759; p = 0.426) and net reclassification (0.176; 95 % CI, -0.08-0.43; p = 0.178).
引用
收藏
页码:531 / 536
页数:6
相关论文
共 50 条
  • [1] Derivation and validation of a machine learning-based risk prediction model for in-hospital mortality in patients with acute heart failure
    Misumi, K.
    Matsue, Y.
    Nogi, K.
    Kitai, T.
    Oishi, S.
    Suzuki, S.
    Yamamoto, M.
    Kida, T.
    Okumura, T.
    Nogi, M.
    Ishihara, S.
    Ueda, T.
    Kawakami, R.
    Saito, Y.
    Minamino, T.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1083 - 1083
  • [2] A Machine Learning-Based Prediction Model for Acute Kidney Injury in Patients With Congestive Heart Failure
    Peng, Xi
    Li, Le
    Wang, Xinyu
    Zhang, Huiping
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [3] Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure
    Wang, Qi
    Li, Bin
    Chen, Kangyu
    Yu, Fei
    Su, Hao
    Hu, Kai
    Liu, Zhiquan
    Wu, Guohong
    Yan, Ji
    Su, Guohai
    [J]. ESC HEART FAILURE, 2022, 8 (06): : 5363 - 5371
  • [4] Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure
    Wang, Qi
    Li, Bin
    Chen, Kangyu
    Yu, Fei
    Su, Hao
    Hu, Kai
    Liu, Zhiquan
    Wu, Guohong
    Yan, Ji
    Su, Guohai
    [J]. ESC HEART FAILURE, 2021, 8 (06): : 5363 - 5371
  • [5] Machine learning-based model for worsening heart failure risk in Chinese chronic heart failure patients
    Sun, Ziyi
    Wang, Zihan
    Yun, Zhangjun
    Sun, Xiaoning
    Lin, Jianguo
    Zhang, Xiaoxiao
    Wang, Qingqing
    Duan, Jinlong
    Huang, Li
    Li, Lin
    Yao, Kuiwu
    [J]. ESC HEART FAILURE, 2024,
  • [6] A Contrastive Learning-Based Interpretable Prediction Model for Patients with Heart Failure
    Zhang, Jinxiang
    Xu, Tianhan
    Li, Bin
    [J]. ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 288 - 299
  • [7] Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning
    Zhang, Lixiang
    Zhou, Xiaojuan
    Cao, Jiaoyu
    [J]. PEERJ, 2024, 12
  • [8] Machine Learning-Based Prediction Models of Acute Respiratory Failure in Patients with Acute Pesticide Poisoning
    Kim, Yeongmin
    Chae, Minsu
    Cho, Namjun
    Gil, Hyowook
    Lee, Hwamin
    [J]. MATHEMATICS, 2022, 10 (24)
  • [9] Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer
    Chen, Wansu
    Zhou, Yichen
    Xie, Fagen
    Butler, Rebecca K.
    Jeon, Christie Y.
    Luong, Tiffany Q.
    Zhou, Botao
    Lin, Yu-Chen
    Lustigova, Eva
    Pisegna, Joseph R.
    Kim, Sungjin
    Wu, Bechien U.
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (01): : 157 - 167
  • [10] Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke
    Heo, JoonNyung
    Yoon, Jihoon G.
    Park, Hyungjong
    Kim, Young Dae
    Nam, Hyo Suk
    Heo, Ji Hoe
    [J]. STROKE, 2019, 50 (05) : 1263 - 1265