Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer

被引:8
|
作者
Chen, Wansu [1 ]
Zhou, Yichen [1 ]
Xie, Fagen [1 ]
Butler, Rebecca K. [1 ]
Jeon, Christie Y. [2 ]
Luong, Tiffany Q. [1 ]
Zhou, Botao [1 ]
Lin, Yu-Chen [2 ]
Lustigova, Eva [1 ]
Pisegna, Joseph R. [3 ,4 ,5 ]
Kim, Sungjin [2 ]
Wu, Bechien U. [6 ]
机构
[1] Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91103 USA
[2] Cedars Sinai Med Ctr, Los Angeles, CA USA
[3] VA Greater Angeles Healthcare Syst, Div Gastroenterol & Hepatol, Los Angeles, CA USA
[4] UCLA, Dept Med, David Geffen Sch Med, Los Angeles, CA USA
[5] UCLA, Dept Human Genet, David Geffen Sch Med, Los Angeles, CA USA
[6] Southern Calif Permanente Med Grp, Dept Gastroenterol, Ctr Pancreat Care, Los Angeles Med Ctr, Los Angeles, CA USA
来源
AMERICAN JOURNAL OF GASTROENTEROLOGY | 2023年 / 118卷 / 01期
基金
美国国家卫生研究院;
关键词
RISK;
D O I
10.14309/ajg.0000000000002050
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
INTRODUCTION:There is currently no widely accepted approach to screening for pancreatic cancer (PC). We aimed to develop and validate a risk prediction model for pancreatic ductal adenocarcinoma (PDAC), the most common form of PC, across 2 health systems using electronic health records.METHODS:This retrospective cohort study consisted of patients aged 50-84 years having at least 1 clinic-based visit over a 10-year study period at Kaiser Permanente Southern California (model training, internal validation) and the Veterans Affairs (VA, external testing). Random survival forests models were built to identify the most relevant predictors from >500 variables and to predict risk of PDAC within 18 months of cohort entry.RESULTS:The Kaiser Permanente Southern California cohort consisted of 1.8 million patients (mean age 61.6) with 1,792 PDAC cases. The 18-month incidence rate of PDAC was 0.77 (95% confidence interval 0.73-0.80)/1,000 person-years. The final main model contained age, abdominal pain, weight change, HbA1c, and alanine transaminase change (c-index: mean = 0.77, SD = 0.02; calibration test: P value 0.4, SD 0.3). The final early detection model comprised the same features as those selected by the main model except for abdominal pain (c-index: 0.77 and SD 0.4; calibration test: P value 0.3 and SD 0.3). The VA testing cohort consisted of 2.7 million patients (mean age 66.1) with an 18-month incidence rate of 1.27 (1.23-1.30)/1,000 person-years. The recalibrated main and early detection models based on VA testing data sets achieved a mean c-index of 0.71 (SD 0.002) and 0.68 (SD 0.003), respectively.DISCUSSION:Using widely available parameters in electronic health records, we developed and externally validated parsimonious machine learning-based models for detection of PC. These models may be suitable for real-time clinical application.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条
  • [1] Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure
    Misumi, Kayo
    Matsue, Yuya
    Nogi, Kazutaka
    Fujimoto, Yudai
    Kagiyama, Nobuyuki
    Kasai, Takatoshi
    Kitai, Takeshi
    Oishi, Shogo
    Akiyama, Eiichi
    Suzuki, Satoshi
    Yamamoto, Masayoshi
    Kida, Keisuke
    Okumura, Takahiro
    Nogi, Maki
    Ishihara, Satomi
    Ueda, Tomoya
    Kawakami, Rika
    Saito, Yoshihiko
    Minamino, Tohru
    [J]. JOURNAL OF CARDIOLOGY, 2023, 81 (06) : 531 - 536
  • [2] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    [J]. PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [3] Assessing the external validity of machine learning-based detection of glaucoma
    Chua, Jacqueline
    Li, Chi
    Popa-Cherecheanu, Alina
    Wong, Damon
    Schmetterer, Leopold
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [4] Assessing the external validity of machine learning-based detection of glaucoma
    Chi Li
    Jacqueline Chua
    Florian Schwarzhans
    Rahat Husain
    Michaël J. A. Girard
    Shivani Majithia
    Yih-Chung Tham
    Ching-Yu Cheng
    Tin Aung
    Georg Fischer
    Clemens Vass
    Inna Bujor
    Chee Keong Kwoh
    Alina Popa-Cherecheanu
    Leopold Schmetterer
    Damon Wong
    [J]. Scientific Reports, 13
  • [5] Assessing the external validity of machine learning-based detection of glaucoma
    Li, Chi
    Chua, Jacqueline
    Schwarzhans, Florian
    Husain, Rahat
    Girard, Michael J. A.
    Majithia, Shivani
    Tham, Yih-Chung
    Cheng, Ching-Yu
    Aung, Tin
    Fischer, Georg
    Vass, Clemens
    Bujor, Inna
    Kwoh, Chee Keong
    Popa-Cherecheanu, Alina
    Schmetterer, Leopold
    Wong, Damon
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Derivation and validation of a machine learning-based risk prediction model for in-hospital mortality in patients with acute heart failure
    Misumi, K.
    Matsue, Y.
    Nogi, K.
    Kitai, T.
    Oishi, S.
    Suzuki, S.
    Yamamoto, M.
    Kida, T.
    Okumura, T.
    Nogi, M.
    Ishihara, S.
    Ueda, T.
    Kawakami, R.
    Saito, Y.
    Minamino, T.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1083 - 1083
  • [7] Machine learning-based derivation and external validation of a tool to predict death and development of organ failure in hospitalized patients with COVID-19
    Xu, Yixi
    Trivedi, Anusua
    Becker, Nicholas
    Blazes, Marian
    Ferres, Juan Lavista
    Lee, Aaron
    Conrad Liles, W.
    Bhatraju, Pavan K.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Machine learning-based derivation and external validation of a tool to predict death and development of organ failure in hospitalized patients with COVID-19
    Yixi Xu
    Anusua Trivedi
    Nicholas Becker
    Marian Blazes
    Juan Lavista Ferres
    Aaron Lee
    W. Conrad Liles
    Pavan K. Bhatraju
    [J]. Scientific Reports, 12
  • [9] Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts
    Forrest, Iain S.
    Petrazzini, Ben O.
    Duffy, Aine
    Park, Joshua K.
    Marquez-Luna, Carla
    Jordan, Daniel M.
    Rocheleau, Ghislain
    Cho, Judy H.
    Rosenson, Robert S.
    Narula, Jagat
    Nadkarni, Girish N.
    Do, Ron
    [J]. LANCET, 2023, 401 (10372): : 215 - 225
  • [10] STROKE PROGNOSTICATION FOR DISCHARGE PLANNING WITH MACHINE LEARNING: DERIVATION, PROSPECTIVE VALIDATION AND EXTERNAL VALIDATION
    Bacchi, Stephen
    Oakden-Rayner, Luke
    Menon, David K.
    Moey, Andrew
    Jannes, Jim
    Kleinig, Timothy
    Koblar, Simon
    [J]. INTERNAL MEDICINE JOURNAL, 2021, 51 : 7 - 7