Assessing the external validity of machine learning-based detection of glaucoma

被引:10
|
作者
Li, Chi [1 ,4 ]
Chua, Jacqueline [1 ,2 ,3 ]
Schwarzhans, Florian [5 ,6 ]
Husain, Rahat [1 ,2 ]
Girard, Michael J. A. [1 ,2 ,7 ]
Majithia, Shivani [1 ]
Tham, Yih-Chung [1 ,2 ]
Cheng, Ching-Yu [1 ,2 ,8 ]
Aung, Tin [1 ,2 ,8 ]
Fischer, Georg [5 ]
Vass, Clemens [9 ]
Bujor, Inna [10 ]
Kwoh, Chee Keong [4 ]
Popa-Cherecheanu, Alina [10 ,11 ]
Schmetterer, Leopold [1 ,2 ,3 ,6 ,7 ,12 ,13 ]
Wong, Damon [1 ,3 ,7 ,12 ]
机构
[1] Singapore Eye Res Inst, Singapore Natl Eye Ctr, 20 Coll Rd,Acad,Level 6,Discovery Tower, Singapore 169856, Singapore
[2] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[3] SERI NTU Adv Ocular Engn STANCE, Singapore, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Med Univ Vienna, Ctr Med Stat Informat & Intelligent Syst, Sect Med Informat Management, Vienna, Austria
[6] Med Univ Vienna, Dept Clin Pharmacol, Vienna, Austria
[7] Inst Mol & Clin Ophthalmol, Basel, Switzerland
[8] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore
[9] Med Univ Vienna, Dept Ophthalmol & Optometry, Vienna, Austria
[10] Carol Davila Univ Med & Pharm, Bucharest, Romania
[11] Emergency Univ Hosp, Dept Ophthalmol, Bucharest, Romania
[12] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore, Singapore
[13] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
FIBER LAYER THICKNESS; SINGAPORE-EPIDEMIOLOGY; EYE-DISEASES; OPTIC DISC; VARIABILITY; POSITION; PROFILE; STAGE;
D O I
10.1038/s41598-023-27783-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies using machine learning (ML) approaches have reported high diagnostic accuracies for glaucoma detection. However, none assessed model performance across ethnicities. The aim of the study is to externally validate ML models for glaucoma detection from optical coherence tomography (OCT) data. We performed a prospective, cross-sectional study, where 514 Asians (257 glaucoma/257 controls) were enrolled to construct ML models for glaucoma detection, which was then tested on 356 Asians (183 glaucoma/173 controls) and 138 Caucasians (57 glaucoma/81 controls). We used the retinal nerve fibre layer (RNFL) thickness values produced by the compensation model, which is a multiple regression model fitted on healthy subjects that corrects the RNFL profile for anatomical factors and the original OCT data (measured) to build two classifiers, respectively. Both the ML models (area under the receiver operating [AUC] = 0.96 and accuracy = 92%) outperformed the measured data (AUC = 0.93; P < 0.001) for glaucoma detection in the Asian dataset. However, in the Caucasian dataset, the ML model trained with compensated data (AUC = 0.93 and accuracy = 84%) outperformed the ML model trained with original data (AUC = 0.83 and accuracy = 79%; P < 0.001) and measured data (AUC = 0.82; P < 0.001) for glaucoma detection. The performance with the ML model trained on measured data showed poor reproducibility across different datasets, whereas the performance of the compensated data was maintained. Care must be taken when ML models are applied to patient cohorts of different ethnicities.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Assessing the external validity of machine learning-based detection of glaucoma
    Chua, Jacqueline
    Li, Chi
    Popa-Cherecheanu, Alina
    Wong, Damon
    Schmetterer, Leopold
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [2] Assessing the external validity of machine learning-based detection of glaucoma
    Chi Li
    Jacqueline Chua
    Florian Schwarzhans
    Rahat Husain
    Michaël J. A. Girard
    Shivani Majithia
    Yih-Chung Tham
    Ching-Yu Cheng
    Tin Aung
    Georg Fischer
    Clemens Vass
    Inna Bujor
    Chee Keong Kwoh
    Alina Popa-Cherecheanu
    Leopold Schmetterer
    Damon Wong
    [J]. Scientific Reports, 13
  • [3] Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer
    Chen, Wansu
    Zhou, Yichen
    Xie, Fagen
    Butler, Rebecca K.
    Jeon, Christie Y.
    Luong, Tiffany Q.
    Zhou, Botao
    Lin, Yu-Chen
    Lustigova, Eva
    Pisegna, Joseph R.
    Kim, Sungjin
    Wu, Bechien U.
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (01): : 157 - 167
  • [4] Evaluating the performance and external validity of machine learning-based prediction models in liver transplantation: an international study
    Ivanics, T.
    So, D.
    Claasen, M.
    Wallace, D.
    Patel, M.
    Gravely, A.
    Walker, K.
    Cowling, T.
    Erdman, L.
    Sapisochin, G.
    [J]. TRANSPLANTATION, 2022, 106 (8S) : 6 - 6
  • [5] Machine learning-based phishing attack detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    [J]. International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 378 - 388
  • [6] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [7] Machine Learning-Based Phishing Attack Detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 378 - 388
  • [8] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    [J]. Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831
  • [9] Machine learning-based guilt detection in text
    Meque, Abdul Gafar Manuel
    Hussain, Nisar
    Sidorov, Grigori
    Gelbukh, Alexander
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Machine Learning-Based Detection of Spam Emails
    Bin Siddique, Zeeshan
    Khan, Mudassar Ali
    Din, Ikram Ud
    Almogren, Ahmad
    Mohiuddin, Irfan
    Nazir, Shah
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021