Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer

被引:8
|
作者
Chen, Wansu [1 ]
Zhou, Yichen [1 ]
Xie, Fagen [1 ]
Butler, Rebecca K. [1 ]
Jeon, Christie Y. [2 ]
Luong, Tiffany Q. [1 ]
Zhou, Botao [1 ]
Lin, Yu-Chen [2 ]
Lustigova, Eva [1 ]
Pisegna, Joseph R. [3 ,4 ,5 ]
Kim, Sungjin [2 ]
Wu, Bechien U. [6 ]
机构
[1] Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91103 USA
[2] Cedars Sinai Med Ctr, Los Angeles, CA USA
[3] VA Greater Angeles Healthcare Syst, Div Gastroenterol & Hepatol, Los Angeles, CA USA
[4] UCLA, Dept Med, David Geffen Sch Med, Los Angeles, CA USA
[5] UCLA, Dept Human Genet, David Geffen Sch Med, Los Angeles, CA USA
[6] Southern Calif Permanente Med Grp, Dept Gastroenterol, Ctr Pancreat Care, Los Angeles Med Ctr, Los Angeles, CA USA
来源
AMERICAN JOURNAL OF GASTROENTEROLOGY | 2023年 / 118卷 / 01期
基金
美国国家卫生研究院;
关键词
RISK;
D O I
10.14309/ajg.0000000000002050
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
INTRODUCTION:There is currently no widely accepted approach to screening for pancreatic cancer (PC). We aimed to develop and validate a risk prediction model for pancreatic ductal adenocarcinoma (PDAC), the most common form of PC, across 2 health systems using electronic health records.METHODS:This retrospective cohort study consisted of patients aged 50-84 years having at least 1 clinic-based visit over a 10-year study period at Kaiser Permanente Southern California (model training, internal validation) and the Veterans Affairs (VA, external testing). Random survival forests models were built to identify the most relevant predictors from >500 variables and to predict risk of PDAC within 18 months of cohort entry.RESULTS:The Kaiser Permanente Southern California cohort consisted of 1.8 million patients (mean age 61.6) with 1,792 PDAC cases. The 18-month incidence rate of PDAC was 0.77 (95% confidence interval 0.73-0.80)/1,000 person-years. The final main model contained age, abdominal pain, weight change, HbA1c, and alanine transaminase change (c-index: mean = 0.77, SD = 0.02; calibration test: P value 0.4, SD 0.3). The final early detection model comprised the same features as those selected by the main model except for abdominal pain (c-index: 0.77 and SD 0.4; calibration test: P value 0.3 and SD 0.3). The VA testing cohort consisted of 2.7 million patients (mean age 66.1) with an 18-month incidence rate of 1.27 (1.23-1.30)/1,000 person-years. The recalibrated main and early detection models based on VA testing data sets achieved a mean c-index of 0.71 (SD 0.002) and 0.68 (SD 0.003), respectively.DISCUSSION:Using widely available parameters in electronic health records, we developed and externally validated parsimonious machine learning-based models for detection of PC. These models may be suitable for real-time clinical application.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条
  • [31] Supervised Machine Learning-based Fall Detection
    Caya, Meo Vincent C.
    Magwili, Glenn V.
    Agulto, Denver L.
    John Laranang, Russell
    Palomo, Louisse Kayle G.
    [J]. 2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [32] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    [J]. Empirical Software Engineering, 2024, 29
  • [33] Machine learning-based guilt detection in text
    Abdul Gafar Manuel Meque
    Nisar Hussain
    Grigori Sidorov
    Alexander Gelbukh
    [J]. Scientific Reports, 13
  • [34] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    [J]. E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [35] Machine Learning-Based Prediction of Suicidality in Adolescents With Allergic Rhinitis: Derivation and Validation in 2 Independent Nationwide Cohorts
    Lee, Hojae
    Cho, Joong Ki
    Park, Jaeyu
    Lee, Hyeri
    Fond, Guillaume
    Boyer, Laurent
    Kim, Hyeon Jin
    Park, Seoyoung
    Cho, Wonyoung
    Lee, Hayeon
    Lee, Jinseok
    Yon, Dong Keon
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [36] Machine learning-based prediction model and visual interpretation for prostate cancer
    Gang Chen
    Xuchao Dai
    Mengqi Zhang
    Zhujun Tian
    Xueke Jin
    Kun Mei
    Hong Huang
    Zhigang Wu
    [J]. BMC Urology, 23
  • [37] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [38] mtPCDI: a machine learning-based prognostic model for prostate cancer recurrence
    Cheng, Guoliang
    Xu, Junrong
    Wang, Honghua
    Chen, Jingzhao
    Huang, Liwei
    Qian, Zhi Rong
    Fan, Yong
    [J]. FRONTIERS IN GENETICS, 2024, 15
  • [39] Machine learning-based prediction model and visual interpretation for prostate cancer
    Chen, Gang
    Dai, Xuchao
    Zhang, Mengqi
    Tian, Zhujun
    Jin, Xueke
    Mei, Kun
    Huang, Hong
    Wu, Zhigang
    [J]. BMC UROLOGY, 2023, 23 (01)
  • [40] Machine learning automated planning for rectal cancer VMAT: Model sharing and external validation
    Kierkels, R.
    Arents-Huls, A.
    de Boer, M.
    Jeene, P. M.
    den Hartogh, M.
    Fransen, D.
    Thulin, P.
    Holmstrom, M.
    van der Wal, E.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S575 - S576