Decomposing Generalized Bent and Hyperbent Functions

被引:20
|
作者
Martinsen, Thor [1 ]
Meidl, Wilfried [2 ]
Mesnager, Sihem [3 ,4 ,5 ]
Stanica, Pantelimon [1 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[3] Univ Paris 08, Dept Math, F-93526 St Denis, France
[4] Univ Paris 08, CNRS, LAGA UMR 7539, Sorbonne Paris Cite, F-93430 Villetaneuse, France
[5] Telecom ParisTech, F-75013 Paris, France
基金
奥地利科学基金会;
关键词
Boolean functions; Walsh-Hadamard transforms; bent functions; semibent functions; hyperbent functions; generalized bent functions; cyclotomic fields; CONSTRUCTION;
D O I
10.1109/TIT.2017.2754498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce generalized hyperbent functions from F-2n to Z(2k), and investigate decompositions of generalized (hyper) bent functions. We show that generalized (hyper) bent functions f from F-2n to Z(2k) consist of components which are generalized (hyper) bent functions from F-2n to Z(2k)' for some k' < k. For even n, most notably we show that the g-hyperbentness of f is equivalent to the hyperbentness of the components of f with some conditions on the Walsh-Hadamard coefficients. For odd n, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even n, where the associated Boolean functions are bent.
引用
收藏
页码:7804 / 7812
页数:9
相关论文
共 50 条
  • [31] New results on the nonexistence of generalized bent functions
    Feng, KQ
    Liu, FM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) : 3066 - 3071
  • [32] New results on nonexistence of generalized bent functions
    Yupeng Jiang
    Yingpu Deng
    [J]. Designs, Codes and Cryptography, 2015, 75 : 375 - 385
  • [33] New results on nonexistence of generalized bent functions
    Jiang, Yupeng
    Deng, Yingpu
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 375 - 385
  • [34] New Secondary Constructions of Generalized Bent Functions
    Yang Zhiyao
    Ke Pinhui
    Chen Zhixiong
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (06) : 1022 - 1029
  • [35] A NEW GENERAL CONSTRUCTION FOR GENERALIZED BENT FUNCTIONS
    CHUNG, H
    KUMAR, PV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 206 - 209
  • [36] Nonexistence of two classes of generalized bent functions
    Jianing Li
    Yingpu Deng
    [J]. Designs, Codes and Cryptography, 2017, 85 : 471 - 482
  • [37] Quaternary Generalized Boolean Bent Functions Obtained Through Permutation of Binary Boolean Bent Functions
    Stankovic, Radomir S.
    Stankovic, Milena
    Astola, Jaakko T.
    Moraga, Claudio
    [J]. 2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 1 - 6
  • [38] A construction of hyperbent functions with polynomial trace form
    Cao XiWang
    Hu Lei
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2229 - 2234
  • [39] Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions
    Tang, Chunming
    Xiang, Can
    Qi, Yanfeng
    Feng, Keqin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4668 - 4674
  • [40] Hyperbent functions, Kloosterman sums, and Dickson polynomials
    Charpin, Pascale
    Gong, Guang
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4230 - 4238