Decomposing Generalized Bent and Hyperbent Functions

被引:20
|
作者
Martinsen, Thor [1 ]
Meidl, Wilfried [2 ]
Mesnager, Sihem [3 ,4 ,5 ]
Stanica, Pantelimon [1 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[3] Univ Paris 08, Dept Math, F-93526 St Denis, France
[4] Univ Paris 08, CNRS, LAGA UMR 7539, Sorbonne Paris Cite, F-93430 Villetaneuse, France
[5] Telecom ParisTech, F-75013 Paris, France
基金
奥地利科学基金会;
关键词
Boolean functions; Walsh-Hadamard transforms; bent functions; semibent functions; hyperbent functions; generalized bent functions; cyclotomic fields; CONSTRUCTION;
D O I
10.1109/TIT.2017.2754498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce generalized hyperbent functions from F-2n to Z(2k), and investigate decompositions of generalized (hyper) bent functions. We show that generalized (hyper) bent functions f from F-2n to Z(2k) consist of components which are generalized (hyper) bent functions from F-2n to Z(2k)' for some k' < k. For even n, most notably we show that the g-hyperbentness of f is equivalent to the hyperbentness of the components of f with some conditions on the Walsh-Hadamard coefficients. For odd n, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even n, where the associated Boolean functions are bent.
引用
收藏
页码:7804 / 7812
页数:9
相关论文
共 50 条
  • [21] Hyperbent functions from hyperovals
    Kanat Abdukhalikov
    Duy Ho
    [J]. Cryptography and Communications, 2023, 15 : 1031 - 1048
  • [22] On generalized hyper-bent functions
    Sihem Mesnager
    [J]. Cryptography and Communications, 2020, 12 : 455 - 468
  • [24] New Secondary Constructions of Generalized Bent Functions
    YANG Zhiyao
    KE Pinhui
    CHEN Zhixiong
    [J]. Chinese Journal of Electronics, 2021, 30 (06) : 1022 - 1029
  • [25] A Note on Generalized Bent Criteria for Boolean Functions
    Gangopadhyay, Sugata
    Pasalic, Enes
    Stanica, Pantelimon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3233 - 3236
  • [26] On generalized bent functions with Dillon's exponents
    Bajric, Samed
    Pasalic, Enes
    Ribic-Muratovic, Amela
    Sugata, Gangopadhyay
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (04) : 222 - 227
  • [27] Generalized bent criteria for Boolean functions (I)
    Riera, Constanza
    Parker, Matthew G.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4142 - 4159
  • [28] Partial spread and vectorial generalized bent functions
    Thor Martinsen
    Wilfried Meidl
    Pantelimon Stănică
    [J]. Designs, Codes and Cryptography, 2017, 85 : 1 - 13
  • [29] Partial spread and vectorial generalized bent functions
    Martinsen, Thor
    Meidl, Wilfried
    Stanica, Pantelimon
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (01) : 1 - 13
  • [30] Nonexistence of two classes of generalized bent functions
    Li, Jianing
    Deng, Yingpu
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (03) : 471 - 482