Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions

被引:28
|
作者
Tang, Chunming [1 ]
Xiang, Can [2 ]
Qi, Yanfeng [3 ]
Feng, Keqin [4 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R China
[2] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Boolean functions; Walsh-Hadamard transforms; bent functions; 2(k)-bent functions; generalized bent functions; cyclotomic fields;
D O I
10.1109/TIT.2017.2686987
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate properties of generalized bent Boolean functions and 2(k)-bent (i.e., negabent, octabent, hexadecabent, et al.) Boolean functions in a uniform framework. From the Hadamard matrices, Hodzic and Pasalic presented sufficient conditions for generalized bent functions. Using cyclotomic fields and the decomposition of generalized bent functions, we generalize their results, prove that Hodzic and Pasalic's conditions of generalized bent functions are not only sufficient but also necessary, and completely characterize generalized bent functions in terms of their component functions. Furthermore, we present a secondary construction of bent functions or semi-bent functions from generalized bent functions. Finally, we give the relations of generalized bent functions and 2(k)-bent functions, demonstrate that 2(k)-bent functions are actually a special class of generalized bent functions, and completely characterize 2(k)-bent functions.
引用
收藏
页码:4668 / 4674
页数:7
相关论文
共 50 条
  • [1] On Weak and Strong 2k-Bent Boolean Functions
    Stanica, Pantelimon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (05) : 2827 - 2835
  • [2] Bent and generalized bent Boolean functions
    Pantelimon Stănică
    Thor Martinsen
    Sugata Gangopadhyay
    Brajesh Kumar Singh
    [J]. Designs, Codes and Cryptography, 2013, 69 : 77 - 94
  • [3] Bent and generalized bent Boolean functions
    Stanica, Pantelimon
    Martinsen, Thor
    Gangopadhyay, Sugata
    Singh, Brajesh Kumar
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) : 77 - 94
  • [4] Generalized Boolean bent functions
    Poinsot, L
    Harari, S
    [J]. PROGRESS IN CRYPTOLOGY - INDOCRYPT 2004, PROCEEDINGS, 2004, 3348 : 107 - 119
  • [5] Quaternary Generalized Boolean Bent Functions Obtained Through Permutation of Binary Boolean Bent Functions
    Stankovic, Radomir S.
    Stankovic, Milena
    Astola, Jaakko T.
    Moraga, Claudio
    [J]. 2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 1 - 6
  • [6] Further Results on Generalized Bent Functions and Their Complete Characterization
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    Wang, Libo
    Wu, Baofeng
    Feng, Keqin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 5441 - 5452
  • [7] A Note on Generalized Bent Criteria for Boolean Functions
    Gangopadhyay, Sugata
    Pasalic, Enes
    Stanica, Pantelimon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3233 - 3236
  • [8] Generalized bent criteria for Boolean functions (I)
    Riera, Constanza
    Parker, Matthew G.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4142 - 4159
  • [9] On Boolean bent functions
    Mitton, Michel
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (03): : 323 - 333
  • [10] Further results on constructions of generalized bent Boolean functions
    Zhang, Fengrong
    Xia, Shixiong
    Stanica, Pantelimon
    Zhou, Yu
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (05)