Bent and generalized bent Boolean functions

被引:47
|
作者
Stanica, Pantelimon [1 ]
Martinsen, Thor [1 ]
Gangopadhyay, Sugata [2 ]
Singh, Brajesh Kumar [2 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Generalized Boolean functions; Generalized bent functions; Walsh-Hadamard transform;
D O I
10.1007/s10623-012-9622-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the properties of generalized bent functions defined on with values in , where q a parts per thousand yen 2 is any positive integer. We characterize the class of generalized bent functions symmetric with respect to two variables, provide analogues of Maiorana-McFarland type bent functions and Dillon's functions in the generalized set up. A class of bent functions called generalized spreads is introduced and we show that it contains all Dillon type generalized bent functions and Maiorana-McFarland type generalized bent functions. Thus, unification of two different types of generalized bent functions is achieved. The crosscorrelation spectrum of generalized Dillon type bent functions is also characterized. We further characterize generalized bent Boolean functions defined on with values in and . Moreover, we propose several constructions of such generalized bent functions for both n even and n odd.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条
  • [1] Bent and generalized bent Boolean functions
    Pantelimon Stănică
    Thor Martinsen
    Sugata Gangopadhyay
    Brajesh Kumar Singh
    [J]. Designs, Codes and Cryptography, 2013, 69 : 77 - 94
  • [2] Generalized Boolean bent functions
    Poinsot, L
    Harari, S
    [J]. PROGRESS IN CRYPTOLOGY - INDOCRYPT 2004, PROCEEDINGS, 2004, 3348 : 107 - 119
  • [3] Quaternary Generalized Boolean Bent Functions Obtained Through Permutation of Binary Boolean Bent Functions
    Stankovic, Radomir S.
    Stankovic, Milena
    Astola, Jaakko T.
    Moraga, Claudio
    [J]. 2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 1 - 6
  • [4] Generalized bent criteria for Boolean functions (I)
    Riera, Constanza
    Parker, Matthew G.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4142 - 4159
  • [5] A Note on Generalized Bent Criteria for Boolean Functions
    Gangopadhyay, Sugata
    Pasalic, Enes
    Stanica, Pantelimon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3233 - 3236
  • [6] Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions
    Tang, Chunming
    Xiang, Can
    Qi, Yanfeng
    Feng, Keqin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4668 - 4674
  • [7] On Boolean bent functions
    Mitton, Michel
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (03): : 323 - 333
  • [8] Further results on constructions of generalized bent Boolean functions
    Zhang, Fengrong
    Xia, Shixiong
    Stanica, Pantelimon
    Zhou, Yu
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (05)
  • [9] Further results on constructions of generalized bent Boolean functions
    Fengrong ZHANG
    Shixiong XIA
    Pantelimon STANICA
    Yu ZHOU
    [J]. Science China(Information Sciences), 2016, 59 (05) : 242 - 244
  • [10] On bent and semi-bent quadratic Boolean functions
    Charpin, P
    Pasalic, E
    Tavernier, C
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4286 - 4298