Bent and generalized bent Boolean functions

被引:47
|
作者
Stanica, Pantelimon [1 ]
Martinsen, Thor [1 ]
Gangopadhyay, Sugata [2 ]
Singh, Brajesh Kumar [2 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Generalized Boolean functions; Generalized bent functions; Walsh-Hadamard transform;
D O I
10.1007/s10623-012-9622-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the properties of generalized bent functions defined on with values in , where q a parts per thousand yen 2 is any positive integer. We characterize the class of generalized bent functions symmetric with respect to two variables, provide analogues of Maiorana-McFarland type bent functions and Dillon's functions in the generalized set up. A class of bent functions called generalized spreads is introduced and we show that it contains all Dillon type generalized bent functions and Maiorana-McFarland type generalized bent functions. Thus, unification of two different types of generalized bent functions is achieved. The crosscorrelation spectrum of generalized Dillon type bent functions is also characterized. We further characterize generalized bent Boolean functions defined on with values in and . Moreover, we propose several constructions of such generalized bent functions for both n even and n odd.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条
  • [31] CONNECTIONS BETWEEN QUATERNARY AND BOOLEAN BENT FUNCTIONS
    Tokareva, N. N.
    Shaporenko, A. S.
    Sole, P.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 561 - 578
  • [32] ON DECOMPOSITION OF A BOOLEAN FUNCTION INTO SUM OF BENT FUNCTIONS
    Tokareva, N. N.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 745 - 751
  • [33] On q-nearly bent Boolean functions
    Chen, Zhixiong
    Klapper, Andrew
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 279 : 210 - 217
  • [34] On the Nonexistence of q-Bent Boolean Functions
    Klapper, Andrew
    Chen, Zhixiong
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2953 - 2961
  • [35] GENERALIZED BENT FUNCTIONS WITH LARGE DIMENSION
    Meidl, Wilfried
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (05) : 1514 - 1530
  • [36] Construction methods for generalized bent functions
    Hodzic, S.
    Pasalic, E.
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 238 : 14 - 23
  • [37] Decomposing Generalized Bent and Hyperbent Functions
    Martinsen, Thor
    Meidl, Wilfried
    Mesnager, Sihem
    Stanica, Pantelimon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7804 - 7812
  • [38] Generalized Bent Functions and Their Gray Images
    Martinsen, Thor
    Meidl, Wilfried
    Stanica, Pantelimon
    [J]. ARITHMETIC OF FINITE FIELDS, WAIFI 2016, 2016, 10064 : 160 - 173
  • [39] On generalized hyper-bent functions
    Mesnager, Sihem
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (03): : 455 - 468
  • [40] THE LINEAR KERNEL OF BOOLEAN FUNCTIONS AND PARTIALLY-BENT FUNCTIONS
    WANG Jianyu (Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 1997, (01) : 6 - 11