Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions

被引:28
|
作者
Tang, Chunming [1 ]
Xiang, Can [2 ]
Qi, Yanfeng [3 ]
Feng, Keqin [4 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R China
[2] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Boolean functions; Walsh-Hadamard transforms; bent functions; 2(k)-bent functions; generalized bent functions; cyclotomic fields;
D O I
10.1109/TIT.2017.2686987
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate properties of generalized bent Boolean functions and 2(k)-bent (i.e., negabent, octabent, hexadecabent, et al.) Boolean functions in a uniform framework. From the Hadamard matrices, Hodzic and Pasalic presented sufficient conditions for generalized bent functions. Using cyclotomic fields and the decomposition of generalized bent functions, we generalize their results, prove that Hodzic and Pasalic's conditions of generalized bent functions are not only sufficient but also necessary, and completely characterize generalized bent functions in terms of their component functions. Furthermore, we present a secondary construction of bent functions or semi-bent functions from generalized bent functions. Finally, we give the relations of generalized bent functions and 2(k)-bent functions, demonstrate that 2(k)-bent functions are actually a special class of generalized bent functions, and completely characterize 2(k)-bent functions.
引用
收藏
页码:4668 / 4674
页数:7
相关论文
共 50 条
  • [31] New characterizations and construction methods of bent and hyper-bent Boolean functions
    Mesnager, Sihem
    Mandal, Bimal
    Tang, Chunming
    [J]. DISCRETE MATHEMATICS, 2020, 343 (11)
  • [32] A new class of bent and hyper-bent Boolean functions in polynomial forms
    Sihem Mesnager
    [J]. Designs, Codes and Cryptography, 2011, 59 : 265 - 279
  • [33] Bent and bent4 spectra of Boolean functions over finite fields
    Anbar, Nurdaguel
    Meidl, Wilfried
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 46 : 163 - 178
  • [34] Bent functions with stronger nonlinear properties: K-bent functions
    Tokareva N.N.
    [J]. Journal of Applied and Industrial Mathematics, 2008, 2 (4) : 566 - 584
  • [35] New Classes of Generalized Boolean Bent Functions Over Z4
    Li, Nian
    Tang, Xiaohu
    Helleseth, Tor
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 841 - 845
  • [36] Enumeration of Bent Boolean Functions by Reconfigurable Computer
    Shafer, J. L.
    Schneider, S. W.
    Butler, J. T.
    Stanica, P.
    [J]. 2010 18TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2010), 2010, : 265 - 272
  • [37] CONNECTIONS BETWEEN QUATERNARY AND BOOLEAN BENT FUNCTIONS
    Tokareva, N. N.
    Shaporenko, A. S.
    Sole, P.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 561 - 578
  • [38] ON DECOMPOSITION OF A BOOLEAN FUNCTION INTO SUM OF BENT FUNCTIONS
    Tokareva, N. N.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 745 - 751
  • [39] On q-nearly bent Boolean functions
    Chen, Zhixiong
    Klapper, Andrew
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 279 : 210 - 217
  • [40] On the Nonexistence of q-Bent Boolean Functions
    Klapper, Andrew
    Chen, Zhixiong
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2953 - 2961