Rainbow Ramsey Problems for the Boolean Lattice

被引:4
|
作者
Chang, Fei-Huang [1 ]
Gerbner, Daniel [2 ]
Li, Wei-Tian [3 ]
Methuku, Abhishek [4 ]
Nagy, Daniel T. [2 ]
Patkos, Balazs [2 ,5 ]
Vizer, Mate [2 ,6 ]
机构
[1] Natl Taiwan Normal Univ New Taipei City, Div Preparatory Programs Overseas Chinese Student, Taipei, Taiwan
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[3] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[4] Univ Birmingham, Birmingham, W Midlands, England
[5] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[6] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
基金
英国工程与自然科学研究理事会;
关键词
Extremal set systems; Forbidden subposet problem; Ramsey theory; FREE FAMILIES;
D O I
10.1007/s11083-021-09581-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the following rainbow Ramsey problem: For posets P, Q what is the smallest number n such that any coloring of the elements of the Boolean lattice B-n either admits a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong (non-induced and induced) versions of this problem.
引用
收藏
页码:453 / 463
页数:11
相关论文
共 50 条
  • [31] A rainbow Ramsey analogue of Rado's theorem
    De Loera, J. A.
    La Haye, R. N.
    Montejano, A.
    Oliveros, D.
    Roldan-Pensado, E.
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2812 - 2818
  • [32] Constructing Ramsey graphs from Boolean function representations
    Parikshit Gopalan
    Combinatorica, 2014, 34 : 173 - 206
  • [33] Constructing Ramsey Graphs from Boolean Function Representations
    Gopalan, Parikshit
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 115 - 128
  • [34] Constructing Ramsey graphs from Boolean function representations
    Gopalan, Parikshit
    COMBINATORICA, 2014, 34 (02) : 173 - 206
  • [35] A heuristic algorithm for rainbow matchings and its application in rainbow Ramsey number for matchings
    Jin, Zemin
    DISCRETE APPLIED MATHEMATICS, 2025, 368 : 153 - 161
  • [36] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Yuxing Jia
    Mei Lu
    Yi Zhang
    Graphs and Combinatorics, 2021, 37 : 409 - 433
  • [37] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Jia, Yuxing
    Lu, Mei
    Zhang, Yi
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 409 - 433
  • [38] Anti-Ramsey Problems for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles, Matchings, or Trees
    Jahanbekam, Sogol
    West, Douglas B.
    JOURNAL OF GRAPH THEORY, 2016, 82 (01) : 75 - 89
  • [39] RANDOM REALS, THE RAINBOW RAMSEY THEOREM, AND ARITHMETIC CONSERVATION
    Conidis, Chris J.
    Slaman, Theodore A.
    JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (01) : 195 - 206
  • [40] Rainbow arithmetic progressions and anti-Ramsey results
    Jungic, V
    Licht, J
    Mahdian, M
    Nesetril, J
    Radoicic, R
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6): : 599 - 620