RANDOM REALS, THE RAINBOW RAMSEY THEOREM, AND ARITHMETIC CONSERVATION

被引:8
|
作者
Conidis, Chris J. [1 ]
Slaman, Theodore A. [2 ]
机构
[1] Univ Waterloo, Dept Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
STRENGTH;
D O I
10.2178/jsl.7801130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the question "To what extent can random reals be used as a tool to establish number theoretic facts?" Let 2-RAN be the principle that for every real X there is a real R which is 2-random relative to X. In Section 2, we observe that the arguments of Csima and Mileti [3] can be implemented in the base theory RCA(0) and so RCA(0) + 2-RAN implies the Rainbow Ramsey Theorem. In Section 3, we show that the Rainbow Ramsey Theorem is not conservative over RCA(0) for arithmetic sentences. Thus, from the Csima-Mileti fact that the existence of random reals has infinitary-combinatorial consequences we can conclude that 2-RAN has non-trivial arithmetic consequences. In Section 4, we show that 2-RAN is conservative over RCA(0) + B Sigma(2) for Pi broken vertical bar-sentences. Thus, the set of first-order consequences of 2-RAN is strictly stronger than P- + I Sigma(1) and no stronger than P- + B Sigma(2).
引用
收藏
页码:195 / 206
页数:12
相关论文
共 50 条
  • [1] RAMSEY THEOREM IN BOUNDED ARITHMETIC
    PUDLAK, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 533 : 308 - 317
  • [2] THE STRENGTH OF THE RAINBOW RAMSEY THEOREM
    Csima, Barbara F.
    Mileti, Joseph R.
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (04) : 1310 - 1324
  • [4] Rainbow arithmetic progressions and anti-Ramsey results
    Jungic, V
    Licht, J
    Mahdian, M
    Nesetril, J
    Radoicic, R
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6): : 599 - 620
  • [5] A rainbow Ramsey analogue of Rado's theorem
    De Loera, J. A.
    La Haye, R. N.
    Montejano, A.
    Oliveros, D.
    Roldan-Pensado, E.
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2812 - 2818
  • [6] SIMPLICITY THEOREM FOR AMEBAS OVER RANDOM REALS
    ABRAMSON, FG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (03) : 409 - 413
  • [7] RAMSEY THEOREM AND POISSON RANDOM MEASURES
    BROWN, TC
    KUPKA, J
    ANNALS OF PROBABILITY, 1983, 11 (04): : 904 - 908
  • [8] A Short Proof of the Random Ramsey Theorem
    Nenadov, Rajko
    Steger, Angelika
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (01): : 130 - 144
  • [9] ON THE RAMSEY PROPERTY FOR SETS OF REALS
    KASTANAS, IG
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (04) : 1035 - 1045
  • [10] A canonical Ramsey theorem with list constraints in random graphs
    Alvarado, Jose D.
    Kohayakawa, Yoshiharu
    Morris, Patrick
    Mota, Guilherme Oliveira
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 13 - 19