Interplay between interior and boundary geometry in Gromov hyperbolic spaces

被引:11
|
作者
Jordi, Julian [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hyperbolic spaces; Boundary at infinity; Quasimetric; Quasisymmetric maps; Quasimoebius maps;
D O I
10.1007/s10711-010-9472-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two visual and geodesic Gromov hyperbolic metric spaces are roughly isometric if and only if their boundaries at infinity, equipped with suitable quasimetrics, are bilipschitz-quasimoebius equivalent. Similarly, they are quasi-isometric if and only if their boundaries are power quasimoebius equivalent.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 50 条