Interplay between interior and boundary geometry in Gromov hyperbolic spaces

被引:11
|
作者
Jordi, Julian [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hyperbolic spaces; Boundary at infinity; Quasimetric; Quasisymmetric maps; Quasimoebius maps;
D O I
10.1007/s10711-010-9472-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two visual and geodesic Gromov hyperbolic metric spaces are roughly isometric if and only if their boundaries at infinity, equipped with suitable quasimetrics, are bilipschitz-quasimoebius equivalent. Similarly, they are quasi-isometric if and only if their boundaries are power quasimoebius equivalent.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 50 条
  • [31] A density problem for Sobolev spaces on Gromov hyperbolic domains
    Koskela, Pekka
    Rajala, Tapio
    Zhang, Yi Ru-Ya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 : 189 - 209
  • [32] Neargeodesics in Gromov hyperbolic John domains in Banach spaces
    Allu, Vasudevarao
    Pandey, Abhishek
    ANNALES FENNICI MATHEMATICI, 2024, 49 (02): : 473 - 485
  • [33] Boundary Behavior of Harmonic Functions on Gromov Hyperbolic Manifolds
    Petit, Camille
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) : 212 - 239
  • [34] The type and stable type of the boundary of a Gromov hyperbolic group
    Bowen, Lewis
    GEOMETRIAE DEDICATA, 2014, 172 (01) : 363 - 386
  • [35] The type and stable type of the boundary of a Gromov hyperbolic group
    Lewis Bowen
    Geometriae Dedicata, 2014, 172 : 363 - 386
  • [36] Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces
    Naor, Assaf
    Peres, Yuval
    Schramm, Oded
    Sheffield, Scott
    DUKE MATHEMATICAL JOURNAL, 2006, 134 (01) : 165 - 197
  • [37] Gromov Boundaries of Non-proper Hyperbolic Geodesic Spaces
    Hasegawa, Yo
    TOKYO JOURNAL OF MATHEMATICS, 2022, 45 (02) : 319 - 331
  • [38] LARGE DEVIATIONS FOR RANDOM WALKS ON GROMOV-HYPERBOLIC SPACES
    Boulanger, Adrien
    Mathieu, Pierre
    Sert, Cagri
    Sisto, Alessandro
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (03): : 885 - 944
  • [39] Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces
    Ilkka Holopainen
    Urs Lang
    Aleksi Vähäkangas
    Mathematische Annalen, 2007, 339 : 101 - 134
  • [40] Geometries Induced by Logarithmic Oscillations as Examples of Gromov Hyperbolic Spaces
    Boskoff, Wladimir G.
    Suceava, Bogdan D.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 707 - 733