Gromov Hyperbolic Discrete Spaces and Their Application to Extension of Classes of Mappings

被引:1
|
作者
Trotsenko, D. A. [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
QUASI-SYMMETRIC MAPS; SETS; BILIPSCHITZ;
D O I
10.1134/S1064562411030240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gromov hyperbolic discrete spaces and their application to extension of classes of mappings are studied. A metric space is considered and the equality relation between sequences is defined. The extendability of a mapping requires the compatibility of its approximations in the sense that the characteristics of the corresponding standard mappings on sufficiently close balls must be close. If a mapping is approximated by similarities on each ball, the quasiconformal extendability of this mapping requires that the angle of rotation and the logarithm of the coefficient of pressure must satisfy the weak condition. For a quasiconvex metric space, function with the weak property is found to be near-Lipschitz. For quasi-convex space and a function with extendability property, a space exists with intrinsic metric.
引用
收藏
页码:344 / 347
页数:4
相关论文
共 50 条
  • [1] Gromov hyperbolic discrete spaces and their application to extension of classes of mappings
    D. A. Trotsenko
    Doklady Mathematics, 2011, 83 : 344 - 347
  • [2] A universal Lipschitz extension property of Gromov hyperbolic spaces
    Brudnyi, Alexander
    Brudnyi, Yuri
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 861 - 896
  • [3] Gromov hyperbolic spaces
    Väisälä, J
    EXPOSITIONES MATHEMATICAE, 2005, 23 (03) : 187 - 231
  • [4] Embeddings of Gromov hyperbolic spaces
    M. Bonk
    O. Schramm
    Geometric & Functional Analysis GAFA, 2000, 10 : 266 - 306
  • [5] Embeddings of Gromov hyperbolic spaces
    Bonk, M
    Schramm, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) : 266 - 306
  • [6] Uniformizing gromov hyperbolic spaces - Introduction
    Bonk, M
    Heinonen, J
    Koskela, P
    ASTERISQUE, 2001, (270) : 1 - +
  • [7] Boundary rigidity of Gromov hyperbolic spaces
    Liang, Hao
    Zhou, Qingshan
    GEOMETRIAE DEDICATA, 2024, 218 (05)
  • [8] Sphericalizations and applications in Gromov hyperbolic spaces
    Zhou, Qingshan
    Li, Yaxiang
    Li, Xining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [9] Potential Theory on Gromov Hyperbolic Spaces
    Kemper, Matthias
    Lohkamp, Joachim
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 394 - 431
  • [10] MAPPINGS INTO HYPERBOLIC SPACES
    KWACK, MH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 695 - 697