A universal Lipschitz extension property of Gromov hyperbolic spaces

被引:0
|
作者
Brudnyi, Alexander [1 ]
Brudnyi, Yuri [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
metric space; Lipschitz function; linear extension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A metric space U has the universal Lipschitz extension property if for an arbitrary metric space M and every subspace S of M isometric to a subspace of U there exists a continuous linear extension of Banach-valued Lipschitz functions on S to those on all of M. We show that the finite direct sum of Gromov hyperbolic spaces of bounded geometry is universal in the sense of this definition.
引用
收藏
页码:861 / 896
页数:36
相关论文
共 50 条