A universal Lipschitz extension property of Gromov hyperbolic spaces

被引:0
|
作者
Brudnyi, Alexander [1 ]
Brudnyi, Yuri [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
metric space; Lipschitz function; linear extension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A metric space U has the universal Lipschitz extension property if for an arbitrary metric space M and every subspace S of M isometric to a subspace of U there exists a continuous linear extension of Banach-valued Lipschitz functions on S to those on all of M. We show that the finite direct sum of Gromov hyperbolic spaces of bounded geometry is universal in the sense of this definition.
引用
收藏
页码:861 / 896
页数:36
相关论文
共 50 条
  • [21] Barycenters and a law of large numbers in Gromov hyperbolic spaces
    Ohta, Shin-ichi
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (03) : 1185 - 1206
  • [22] Non-amenability and visual Gromov hyperbolic spaces
    Koivisto, Juhani
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) : 685 - 704
  • [23] Teichmüller displacement theorem on Gromov hyperbolic spaces
    Zhou, Qingshan
    Ponnusamy, Saminathan
    Luo, Qianghua
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (04) : 1148 - 1166
  • [24] ROUGH ISOMETRY BETWEEN GROMOV HYPERBOLIC SPACES AND UNIFORMIZATION
    Lindquist, Jeff
    Shanmugalingam, Nageswari
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 449 - 464
  • [25] Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces
    Biswas, Kingshook
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [26] Quasi-geodesic segments and Gromov hyperbolic spaces
    Bonk, M
    GEOMETRIAE DEDICATA, 1996, 62 (03) : 281 - 298
  • [27] Actions of certain arithmetic groups on Gromov hyperbolic spaces
    Manning, Jason Fox
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (03): : 1371 - 1402
  • [28] A density problem for Sobolev spaces on Gromov hyperbolic domains
    Koskela, Pekka
    Rajala, Tapio
    Zhang, Yi Ru-Ya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 : 189 - 209
  • [29] Neargeodesics in Gromov hyperbolic John domains in Banach spaces
    Allu, Vasudevarao
    Pandey, Abhishek
    ANNALES FENNICI MATHEMATICI, 2024, 49 (02): : 473 - 485
  • [30] Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces
    Naor, Assaf
    Peres, Yuval
    Schramm, Oded
    Sheffield, Scott
    DUKE MATHEMATICAL JOURNAL, 2006, 134 (01) : 165 - 197