Non-amenability and visual Gromov hyperbolic spaces

被引:2
|
作者
Koivisto, Juhani [1 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
关键词
Hyperbolic spaces; isoperimetry; amenability;
D O I
10.4171/GGD/412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a uniformly coarsely proper hyperbolic cone over a bounded metric space consisting of a finite union of uniformly coarsely connected components each containing at least two points is non-amenable and apply this to visual Gromov hyperbolic spaces.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 50 条
  • [1] Uniform non-amenability
    Arzhantseva, GN
    Burillo, J
    Lustig, M
    Reeves, L
    Short, H
    Ventura, E
    ADVANCES IN MATHEMATICS, 2005, 197 (02) : 499 - 522
  • [2] The amenability and non-amenability of skew fields
    Elek, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) : 637 - 644
  • [3] Non-Amenability and Spontaneous Symmetry Breaking – The Hyperbolic Spin-Chain –
    Max Niedermaier
    Erhard Seiler
    Annales Henri Poincaré, 2005, 6 : 1025 - 1090
  • [4] Non-amenability and spontaneous symmetry breaking - The hyperbolic spin-chain
    Niedermaier, M
    Seiler, E
    ANNALES HENRI POINCARE, 2005, 6 (06): : 1025 - 1090
  • [5] ON THE NON-AMENABILITY OF THE REFLECTIVE QUOTIENT
    Meiri, Chen
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (02) : 903 - 916
  • [6] On the non-amenability of the reflective quotient
    Chen Meiri
    Israel Journal of Mathematics, 2017, 219 : 903 - 916
  • [7] Relative amenability and the non-amenability of B(l1)
    Read, C. J.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 80 : 317 - 333
  • [8] Gromov hyperbolic spaces
    Väisälä, J
    EXPOSITIONES MATHEMATICAE, 2005, 23 (03) : 187 - 231
  • [9] Coarse Non-Amenability and Coarse Embeddings
    Arzhantseva, Goulnara
    Guentner, Erik
    Spakula, Jan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (01) : 22 - 36
  • [10] Coarse Non-Amenability and Coarse Embeddings
    Goulnara Arzhantseva
    Erik Guentner
    Ján Špakula
    Geometric and Functional Analysis, 2012, 22 : 22 - 36