INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE m-CONVEX

被引:0
|
作者
Set, Erhan [1 ]
Ozdemir, M. Emin [1 ]
Sarikaya, Mehmet Zeki [2 ]
机构
[1] Ataturk Univ, Dept Math, KK Educ Fac, TR-25240 Erzurum, Turkey
[2] Duzcee Univ, Fac Sci, Dept Math, Duzce, Turkey
关键词
convex function; Hermite-Hadamard inequality; m-convex function; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we establish several inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are m-convex.
引用
收藏
页码:861 / +
页数:2
相关论文
共 50 条
  • [41] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    [J]. ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +
  • [42] Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions
    Bai, Rui-Fang
    Qi, Feng
    Xi, Bo-Yan
    [J]. FILOMAT, 2013, 27 (01) : 1 - 7
  • [43] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942
  • [44] On the Generalization of Some Hermite-Hadamard Inequalities for Functions with Convex Absolute Values of the Second Derivatives Via Fractional Integrals
    Chen, F. X.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (12) : 1953 - 1965
  • [45] Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex
    Wu, Shan-He
    Sroysang, Banyat
    Xie, Jin-Shan
    Chu, Yu-Ming
    [J]. SPRINGERPLUS, 2015, 4 : 1 - 9
  • [46] Fractional Hermite-Hadamard type inequalities for functions whose mixed derivatives are co-ordinated (log, (s, m))-convex
    Meryem, Benssaad
    Badreddine, Meftah
    Sarra, Ghomrani
    Wahida, Kaidouchi
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 159 - 171
  • [47] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [48] Generalized fractional integral inequalities of Hermite-Hadamard type for (,m)-convex functions
    Qi, Feng
    Mohammed, Pshtiwan Othman
    Yao, Jen-Chih
    Yao, Yong-Hong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [49] Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions
    Ji, Ai-Ping
    Zhang, Tian-Yu
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 255 - 265
  • [50] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS
    He, Chun-Ying
    Xi, Bo-Yan
    Guo, Bai-Ni
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 245 - 258