On the geometric quantization of twisted Poisson manifolds

被引:8
|
作者
Petalidou, Fani [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Tripoli 22100, Greece
关键词
D O I
10.1063/1.2759833
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the geometric quantization process for twisted Poisson manifolds. First, we introduce the notion of Lichnerowicz-twisted Poisson cohomology for twisted Poisson manifolds and we use it in order to characterize their prequantization bundles and to establish their prequantization condition. Next, we introduce a polarization and we discuss the quantization problem. In each step, several examples are presented.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] DEFORMATION QUANTIZATION OF KAHLER MANIFOLDS AND THEIR TWISTED FOCK REPRESENTATION
    Sako, Akifumi
    Umetsu, Hiroshi
    [J]. PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2017, : 225 - 240
  • [22] GEOMETRIC QUANTIZATION OF ODD DIMENSIONAL SPINc MANIFOLDS
    Wang, Jian
    Wang, Yong
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 223 - 234
  • [23] Geometric quantization of b-symplectic manifolds
    Braverman, Maxim
    Loizides, Yiannis
    Song, Yanli
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (01) : 1 - 36
  • [24] On geometric quantization of b-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. ADVANCES IN MATHEMATICS, 2018, 331 : 941 - 951
  • [25] Quasi-Lie Bialgebroids and Twisted Poisson Manifolds
    Dmitry Roytenberg
    [J]. Letters in Mathematical Physics, 2002, 61 : 123 - 137
  • [26] PICARD GROUP OF ISOTROPIC REALIZATIONS OF TWISTED POISSON MANIFOLDS
    Fok, Chi-Kwong
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (02): : 179 - 197
  • [27] On geometric quantization of bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 281 - 288
  • [28] Quasi-Lie bialgebroids and twisted Poisson manifolds
    Roytenberg, D
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (02) : 123 - 137
  • [29] Quantization of Poisson Manifolds from the Integrability of the Modular Function
    F. Bonechi
    N. Ciccoli
    J. Qiu
    M. Tarlini
    [J]. Communications in Mathematical Physics, 2014, 331 : 851 - 885
  • [30] On the Fedosov deformation quantization beyond the regular Poisson manifolds
    Dolgushev, VA
    Isaev, AP
    Lyakhovich, SL
    Sharapov, AA
    [J]. NUCLEAR PHYSICS B, 2002, 645 (03) : 457 - 476