Quasi-Lie bialgebroids and twisted Poisson manifolds

被引:101
|
作者
Roytenberg, D [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Erwin Schrodinger Inst, Vienna, Austria
[3] Penn State Univ, University Pk, PA 16802 USA
关键词
algebroid; Poisson; supermanifold; symplectic;
D O I
10.1023/A:1020708131005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a theory of quasi-Lie bialgebroids using a homological approach. This notion is a generalization of quasi-Lie bialgebras, as well as twisted Poisson structures with a 3-form background which have recently appeared in the context of string theory, and were studied by Severa and Weinstein using a different method.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 50 条
  • [1] Quasi-Lie Bialgebroids and Twisted Poisson Manifolds
    Dmitry Roytenberg
    [J]. Letters in Mathematical Physics, 2002, 61 : 123 - 137
  • [2] Quasi-Lie Bialgebroids, Dirac Structures, and Deformations of Poisson Quasi-Nijenhuis Manifolds
    Luiz, M. do Nascimento
    Mencattini, I.
    Pedroni, M.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (02):
  • [3] Quantum BV-manifolds and quasi-Lie bialgebras
    Granaker, Johan
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (02) : 194 - 204
  • [4] LIE BIALGEBROIDS AND POISSON GROUPOIDS
    MACKENZIE, KCH
    XU, P
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) : 415 - 452
  • [5] Exact Lie bialgebroids and Poisson groupoids
    Liu, ZJ
    Xu, P
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (01) : 138 - 145
  • [6] Quasi-Lie algebras
    Larsson, D
    Silvestrov, SD
    [J]. NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 241 - 248
  • [7] Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids
    da Costa, J. M. Nunes
    Petalidou, F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33): : 10449 - 10475
  • [8] Lie and quasi-Lie structures in thermodynamics
    Mrugala, R
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 874 - 878
  • [9] Bialgebra of quasi-Lie and Lie loops
    Bangoura, Momo
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (04) : 593 - 616
  • [10] On transitive Lie bialgebroids and Poisson groupoids
    Chen, Z
    Liu, Z
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (03) : 253 - 274