pySuStaIn: A Python']Python implementation of the Subtype and Stage Inference algorithm

被引:20
|
作者
Aksman, Leon M. [1 ,2 ]
Wijeratne, Peter A. [2 ]
Oxtoby, Neil P. [2 ]
Eshaghi, Arman [2 ,3 ]
Shand, Cameron [2 ]
Altmann, Andre [2 ]
Alexander, Daniel C. [2 ]
Young, Alexandra L. [4 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Stevens Neuroimaging & Informat Inst, Los Angeles, CA 90007 USA
[2] UCL, Dept Comp Sci & Med Phys, Ctr Med Image Comp, London, England
[3] UCL, Fac Brain Sci, UCL Queen Sq Inst Neurol, Dept Neuroinflammat,Queen Sq Multiple Sclerosis C, London, England
[4] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England
基金
英国医学研究理事会; 美国国家卫生研究院;
关键词
Disease progression modeling; Disease heterogeneity; Disease subtyping; Disease staging; ALZHEIMERS-DISEASE; HETEROGENEITY; PROGRESSION; MODEL;
D O I
10.1016/j.softx.2021.100811
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging of patients has the potential to disentangle the complex spatiotemporal patterns of disease progression. Tools that enable this are in high demand from clinical and treatment-development communities. Here we describe the pySuStaIn software package, a Python-based implementation of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the complexity of heterogeneous diseases by inferring multiple disease progression patterns (subtypes) and individual severity (stages) from cross-sectional data. The primary aims of pySuStaIn are to enable widespread application and translation of SuStaIn via an accessible Python package that supports simple extension and generalization to novel modeling situations within a single, consistent architecture. (C) 2021 The Authors. Published by Elsevier B.V.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [11] OpenMG: A new multigrid implementation in Python']Python
    Bertalan, Tom S.
    Islam, Akand W.
    Sidje, Roger B.
    Carlson, Eric S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (05) : 685 - 700
  • [12] Python']Python phylogenetics: inference from morphology and mitochondrial DNA
    Rawlings, Lesley H.
    Rabosky, Daniel L.
    Donnellan, Stephen C.
    Hutchinson, Mark N.
    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2008, 93 (03) : 603 - 619
  • [13] Python']Python Probabilistic Type Inference with Natural Language Support
    Xu, Zhaogui
    Zhang, Xiangyu
    Chen, Lin
    Pei, Kexin
    Xu, Baowen
    FSE'16: PROCEEDINGS OF THE 2016 24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, 2016, : 607 - 618
  • [14] ViperGPT: Visual Inference via Python']Python Execution for Reasoning
    Suris, Didac
    Menon, Sachit
    Vondrick, Carl
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11854 - 11864
  • [15] Python']Python library for interval-valued fuzzy inference
    Dyczkowski, Krzysztof
    Grochowalski, Piotr
    Kosior, Dawid
    Gil, Dorota
    Koziol, Wojciech
    Pekala, Barbara
    Kaymak, Uzay
    Fuchs, Caro
    Nobile, Marco S.
    SOFTWAREX, 2024, 26
  • [16] MaxSMT-Based Type Inference for Python']Python 3
    Hassan, Mostafa
    Urban, Caterina
    Eilers, Marco
    Mueller, Peter
    COMPUTER AIDED VERIFICATION, CAV 2018, PT II, 2018, 10982 : 12 - 19
  • [17] Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python']Python
    Peng, Yun
    Gao, Cuiyun
    Li, Zongjie
    Gao, Bowei
    Lo, David
    Zhang, Qirun
    Lyu, Michael
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 2019 - 2030
  • [18] ePython']Python: An implementation of Python']Python for the many-core Epiphany coprocessor
    Brown, Nick
    PROCEEDINGS OF PYHPC2016: 6TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2016, : 59 - 66
  • [19] Machine Learning Estimators: Implementation and Comparison in Python']Python
    Merle, Fabian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024,
  • [20] Implementation of a Spam Detector in Python']Python for Corporate Companies
    Bali, Sardarov Yagub
    Rahimov, Nadir Bakhtiyar
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (04) : 567 - 571