pySuStaIn: A Python']Python implementation of the Subtype and Stage Inference algorithm

被引:20
|
作者
Aksman, Leon M. [1 ,2 ]
Wijeratne, Peter A. [2 ]
Oxtoby, Neil P. [2 ]
Eshaghi, Arman [2 ,3 ]
Shand, Cameron [2 ]
Altmann, Andre [2 ]
Alexander, Daniel C. [2 ]
Young, Alexandra L. [4 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Stevens Neuroimaging & Informat Inst, Los Angeles, CA 90007 USA
[2] UCL, Dept Comp Sci & Med Phys, Ctr Med Image Comp, London, England
[3] UCL, Fac Brain Sci, UCL Queen Sq Inst Neurol, Dept Neuroinflammat,Queen Sq Multiple Sclerosis C, London, England
[4] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England
基金
英国医学研究理事会; 美国国家卫生研究院;
关键词
Disease progression modeling; Disease heterogeneity; Disease subtyping; Disease staging; ALZHEIMERS-DISEASE; HETEROGENEITY; PROGRESSION; MODEL;
D O I
10.1016/j.softx.2021.100811
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging of patients has the potential to disentangle the complex spatiotemporal patterns of disease progression. Tools that enable this are in high demand from clinical and treatment-development communities. Here we describe the pySuStaIn software package, a Python-based implementation of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the complexity of heterogeneous diseases by inferring multiple disease progression patterns (subtypes) and individual severity (stages) from cross-sectional data. The primary aims of pySuStaIn are to enable widespread application and translation of SuStaIn via an accessible Python package that supports simple extension and generalization to novel modeling situations within a single, consistent architecture. (C) 2021 The Authors. Published by Elsevier B.V.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Python']Python Implementation of the Dynamic Distributed Dimensional Data Model
    Jananthan, Hayden
    Milechin, Lauren
    Jones, Michael
    Arcand, William
    Bergeron, William
    Bestor, David
    Byun, Chansup
    Houle, Michael
    Hubbell, Matthew
    Gadepally, Vijay
    Klein, Anna
    Michaleas, Peter
    Morales, Guillermo
    Mullen, Julie
    Prout, Andrew
    Reuther, Albert
    Rosa, Antonio
    Samsi, Siddharth
    Yee, Charles
    Kepner, Jeremy
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [42] Implementation of a GNU Radio and Python']Python FMCW Radar Toolkit
    Mathumo, Themba W.
    Swart, Theo G.
    Focke, Richard W.
    2017 IEEE AFRICON, 2017, : 585 - 590
  • [43] Design and Implementation of Coverage Testing System Based on Python']Python
    Xia, Yingchun
    Jiang, Lanxiang
    Zhao, Ruien
    Liu, Quan
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 744 - 748
  • [44] Research and Implementation of Encyclopedia Lecture System based on Python']Python
    Cai, Zhuhua
    Dong, Huailin
    Wu, Qingfeng
    Huang, Juanjuan
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1834 - 1838
  • [45] A Python']Python program for the implementation of the Γ-method for Monte Carlo simulations
    De Palma, Barbara
    Erba, Marco
    Mantovani, Luca
    Mosco, Nicola
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 294 - 301
  • [46] Scikit-ANFIS: A Scikit-Learn Compatible Python']Python Implementation for Adaptive Neuro-Fuzzy Inference System
    Zhang, Dongsong
    Chen, Tianhua
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (06) : 2039 - 2057
  • [47] Demonstration of Parthenogenetic Reproduction in a Pet Ball Python']Python (Python']Python regius) through Analysis of Early-Stage Embryos
    Di Ianni, Francesco
    Albarella, Sara
    Vetere, Alessandro
    Torcello, Marco
    Ablondi, Michela
    Pugliano, Mariagiulia
    Di Mauro, Susanna
    Parma, Pietro
    Ciotola, Francesca
    GENES, 2023, 14 (09)
  • [48] PyDREAM: high-dimensional parameter inference for biological models in python']python
    Shockley, Erin M.
    Vrugt, Jasper A.
    Lopez, Carlos F.
    BIOINFORMATICS, 2018, 34 (04) : 695 - 697
  • [49] Switching function based on hypergraphs with algorithm and python']python programming
    Hamidi, Mohammad
    Rahmati, Marzieh
    Rezaei, Akbar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 2845 - 2859
  • [50] Fixing the Sorting Algorithm for Android, Java']Java and Python']Python
    de Gouw, Stijn
    de Boer, Frank
    ERCIM NEWS, 2015, (102): : 45 - 45