Non-Kolmogorov dissipation in a turbulent planar jet

被引:11
|
作者
Layek, G. C. [1 ]
Sunita [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 12期
关键词
SPREADING RATE;
D O I
10.1103/PhysRevFluids.3.124605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A turbulent planar jet is analyzed theoretically by adopting the Lie theory of continuous transformation groups on turbulent statistical model equations. We show that at the infinite-Reynolds-number limit, the planar jet, in analogy to the turbulent axisymmetric wake, obeys the non-Kolmogorov dissipation law is an element of similar to C-is an element of((k) over bar)(3)(/2)/l, where the dissipation coefficient C-is an element of varies with the local and global Reynolds numbers Re-l and Re-0, respectively. In the planar jet, C-is an element of similar to (Re-0/Re-l)(m), with m = -2 + 2a(1)/a(2) preferably lying in [-2, 1], where a(1) and a(2) are dilation symmetry group parameters. When m is an element of [-2, 0) boolean OR (0, 1], the planar jet follows nontrivial power-law similarity scalings, while when m = -2 it may scale exponentially. The production P of turbulent kinetic energy (k) over bar in this study is considered as P = -(u' v') over bar partial derivative(u) over bar/partial derivative y - ((u'(2)) over bar - (v'(2)) over bar partial derivative(u) over bar/partial derivative x, where -(u' v') over bar, -(u'(2)) over bar, and -(v'(2)) over bar are Reynolds stresses. Thus, the laws support (k) over bar similar to ((u) over bar)(2) not similar to -(u' v') over bar when m not equal 0, (u) over bar being the mean streamwise velocity. The power-law scaling of the turbulent jet half-width and centerline mean streamwise velocity for m = 1 agree well with the recent experimental results. The entrainment coefficient, which is constant in streamwise distance when m = 0 (Kolmogorov dissipation), varies with streamwise distance when m is an element of [-2, 0) boolean OR (0, 1]. It scales nonlinearly as an exponent -1/3 of streamwise distance for m = 1, which agrees with the recent experimental observation of Cafiero and Vassilicos.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] PLANAR TURBULENT JET
    GUTMARK, E
    WYGNANSKI, I
    [J]. JOURNAL OF FLUID MECHANICS, 1976, 73 (FEB10) : 465 - 495
  • [42] Optical propagation through non-Kolmogorov turbulence
    Hua Tang
    BaoLin Ou
    [J]. Science China Information Sciences, 2013, 56 : 1 - 6
  • [43] Average capacity for non-Kolmogorov turbulent slant optical links with beam wander corrected and pointing errors
    Si, Congfang
    Zhang, Yixin
    Wang, Yuanguang
    Wang, Jianyu
    Jia, Jianjun
    [J]. OPTIK, 2012, 123 (01): : 1 - 5
  • [44] BER and outage probability performance of log-normal distribution non-Kolmogorov turbulent optical links
    Chen, Ce
    Cheng, Mingjian
    Gao, Jie
    Zhang, Yixin
    [J]. OPTIK, 2014, 125 (15): : 3913 - 3917
  • [45] Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence
    Zilberman, Arkadi
    Golbraikh, Ephim
    Kopeika, Norman S.
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (07) : 1229 - 1235
  • [46] Spiral spectrum of high-order elliptic Gaussian vortex beams in a non-Kolmogorov turbulent atmosphere
    Wang, Yankun
    Bai, Lu
    Xie, Jinyu
    Zhang, Danmeng
    Lv, Qiang
    Guo, Lixin
    [J]. OPTICS EXPRESS, 2021, 29 (11) : 16056 - 16072
  • [47] SLM-based laboratory simulations of Kolmogorov and non-Kolmogorov anisotropic turbulence
    Toselli, Italo
    Korotkova, Olga
    Xiao, Xifeng
    Voelz, David G.
    [J]. APPLIED OPTICS, 2015, 54 (15) : 4740 - 4744
  • [48] Annular beam scintillations in non-Kolmogorov weak turbulence
    Gercekcioglu, H.
    Baykal, Y.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 106 (04): : 933 - 937
  • [49] Temporal properties of Zernike modes for non-Kolmogorov turbulence
    Voitsekhovich, V. V.
    Orlov, V. G.
    [J]. OPTICS EXPRESS, 2016, 24 (14): : 16123 - 16131
  • [50] Multimode Laser Beam Scintillations in Non-Kolmogorov Turbulence
    Baykal, Yahya
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (09) : 1883 - 1889