Non-Kolmogorov dissipation in a turbulent planar jet

被引:11
|
作者
Layek, G. C. [1 ]
Sunita [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 12期
关键词
SPREADING RATE;
D O I
10.1103/PhysRevFluids.3.124605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A turbulent planar jet is analyzed theoretically by adopting the Lie theory of continuous transformation groups on turbulent statistical model equations. We show that at the infinite-Reynolds-number limit, the planar jet, in analogy to the turbulent axisymmetric wake, obeys the non-Kolmogorov dissipation law is an element of similar to C-is an element of((k) over bar)(3)(/2)/l, where the dissipation coefficient C-is an element of varies with the local and global Reynolds numbers Re-l and Re-0, respectively. In the planar jet, C-is an element of similar to (Re-0/Re-l)(m), with m = -2 + 2a(1)/a(2) preferably lying in [-2, 1], where a(1) and a(2) are dilation symmetry group parameters. When m is an element of [-2, 0) boolean OR (0, 1], the planar jet follows nontrivial power-law similarity scalings, while when m = -2 it may scale exponentially. The production P of turbulent kinetic energy (k) over bar in this study is considered as P = -(u' v') over bar partial derivative(u) over bar/partial derivative y - ((u'(2)) over bar - (v'(2)) over bar partial derivative(u) over bar/partial derivative x, where -(u' v') over bar, -(u'(2)) over bar, and -(v'(2)) over bar are Reynolds stresses. Thus, the laws support (k) over bar similar to ((u) over bar)(2) not similar to -(u' v') over bar when m not equal 0, (u) over bar being the mean streamwise velocity. The power-law scaling of the turbulent jet half-width and centerline mean streamwise velocity for m = 1 agree well with the recent experimental results. The entrainment coefficient, which is constant in streamwise distance when m = 0 (Kolmogorov dissipation), varies with streamwise distance when m is an element of [-2, 0) boolean OR (0, 1]. It scales nonlinearly as an exponent -1/3 of streamwise distance for m = 1, which agrees with the recent experimental observation of Cafiero and Vassilicos.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Impact of Non-Kolmogorov Turbulence on Scintillometer
    Villatoro, Cristian
    Van Zandt, Noah R.
    [J]. 2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [22] Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere
    Ata, Yalcin
    Baykal, Yahya
    [J]. OPTICAL ENGINEERING, 2017, 56 (10)
  • [23] M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere
    Ata, Yalcin
    Baykal, Yahya
    Gokce, Muhsin C.
    [J]. APPLIED OPTICS, 2018, 57 (24) : 7006 - 7011
  • [24] Wander of a Gaussian-Beam Wave Propagated Through a Non-Kolmogorov Turbulent Atmosphere
    Wenhe Du
    Jingxuan Yang
    Zhongmin Yao
    Junguo Lu
    Daosen Liu
    Quanling Cui
    [J]. Journal of Russian Laser Research, 2014, 35 : 416 - 423
  • [25] Average transmittance in non-Kolmogorov turbulence
    Ata, Yalcin
    Baykal, Yahya
    Gercekcioglu, Hamza
    [J]. OPTICS COMMUNICATIONS, 2013, 305 : 126 - 130
  • [26] Zernike expansions for non-Kolmogorov turbulence
    Boreman, GD
    Dainty, C
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (03): : 517 - 522
  • [27] Zernike expansions for non-Kolmogorov turbulence
    Boreman, GD
    Dainty, C
    [J]. SECOND IBEROAMERICAN MEETING ON OPTICS, 1996, 2730 : 192 - 199
  • [28] Pulsed single-photon Bessel beams propagation in non-Kolmogorov turbulent atmosphere
    Zhang, Yixin
    Sheng, Xueli
    [J]. OPTICS AND LASER TECHNOLOGY, 2012, 44 (04): : 1050 - 1053
  • [29] Causes of non-Kolmogorov turbulence in the atmosphere
    Lukin, V. P.
    Nosov, E. V.
    Nosov, V. V.
    Torgaev, A. V.
    [J]. APPLIED OPTICS, 2016, 55 (12) : B163 - B168
  • [30] Ghost imaging of Gaussian Schell pulse beams propagation in the slant non-Kolmogorov turbulent channels
    Zhu, Yu
    Chen, Hongmei
    Zhang, Yixin
    [J]. OPTIK, 2013, 124 (16): : 2496 - 2500