Non-Kolmogorov dissipation in a turbulent planar jet

被引:11
|
作者
Layek, G. C. [1 ]
Sunita [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 12期
关键词
SPREADING RATE;
D O I
10.1103/PhysRevFluids.3.124605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A turbulent planar jet is analyzed theoretically by adopting the Lie theory of continuous transformation groups on turbulent statistical model equations. We show that at the infinite-Reynolds-number limit, the planar jet, in analogy to the turbulent axisymmetric wake, obeys the non-Kolmogorov dissipation law is an element of similar to C-is an element of((k) over bar)(3)(/2)/l, where the dissipation coefficient C-is an element of varies with the local and global Reynolds numbers Re-l and Re-0, respectively. In the planar jet, C-is an element of similar to (Re-0/Re-l)(m), with m = -2 + 2a(1)/a(2) preferably lying in [-2, 1], where a(1) and a(2) are dilation symmetry group parameters. When m is an element of [-2, 0) boolean OR (0, 1], the planar jet follows nontrivial power-law similarity scalings, while when m = -2 it may scale exponentially. The production P of turbulent kinetic energy (k) over bar in this study is considered as P = -(u' v') over bar partial derivative(u) over bar/partial derivative y - ((u'(2)) over bar - (v'(2)) over bar partial derivative(u) over bar/partial derivative x, where -(u' v') over bar, -(u'(2)) over bar, and -(v'(2)) over bar are Reynolds stresses. Thus, the laws support (k) over bar similar to ((u) over bar)(2) not similar to -(u' v') over bar when m not equal 0, (u) over bar being the mean streamwise velocity. The power-law scaling of the turbulent jet half-width and centerline mean streamwise velocity for m = 1 agree well with the recent experimental results. The entrainment coefficient, which is constant in streamwise distance when m = 0 (Kolmogorov dissipation), varies with streamwise distance when m is an element of [-2, 0) boolean OR (0, 1]. It scales nonlinearly as an exponent -1/3 of streamwise distance for m = 1, which agrees with the recent experimental observation of Cafiero and Vassilicos.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Signal-to-noise ratio with adaptive optics compensation in non-Kolmogorov weak turbulent atmosphere
    Ata, Yalcin
    Baykal, Yahya
    Gokce, Muhsin Caner
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2021,
  • [32] Optical propagation through non-Kolmogorov turbulence
    Tang Hua
    Ou BaoLin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (04) : 1 - 6
  • [33] Generalist predator dynamics under kolmogorov versus non-Kolmogorov models
    Xu, Yifang
    Krause, Andrew L.
    Van Gorder, Robert A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 486
  • [34] Coherence length in non-Kolmogorov satellite links
    Baykal, Yahya
    [J]. OPTICS COMMUNICATIONS, 2013, 308 : 105 - 108
  • [35] Phase compensation in non-Kolmogorov atmospheric turbulence
    Tang, Hua
    Guo, Pengzhan
    [J]. OPTIK, 2014, 125 (03): : 1227 - 1230
  • [36] Generalized wavefront phase for non-Kolmogorov turbulence
    Perez, Dario G.
    Zunino, Luciano
    [J]. OPTICS LETTERS, 2008, 33 (06) : 572 - 574
  • [37] Cross beam scintillations in non-Kolmogorov medium
    Baykal, Yahya
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (10) : 2198 - 2202
  • [38] CORRELATORS OF VELOCITY DIFFERENCES AND ENERGY-DISSIPATION AS AN ELEMENT IN THE SUBCRITICAL SCENARIO FOR NON-KOLMOGOROV SCALING IN TURBULENCE
    LVOV, VS
    PROCACCIA, I
    [J]. EUROPHYSICS LETTERS, 1995, 29 (04): : 291 - 296
  • [39] Synthetic turbulence prediction in non-Kolmogorov turbulence
    Nicolleau, F. C. G. A.
    Nowakowski, A. F.
    Michelitsch, T. M.
    [J]. 13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
  • [40] Optical propagation through non-Kolmogorov turbulence
    TANG Hua
    OU BaoLin
    [J]. Science China(Information Sciences), 2013, 56 (04) : 69 - 74