Non-Kolmogorov dissipation in a turbulent planar jet

被引:11
|
作者
Layek, G. C. [1 ]
Sunita [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 12期
关键词
SPREADING RATE;
D O I
10.1103/PhysRevFluids.3.124605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A turbulent planar jet is analyzed theoretically by adopting the Lie theory of continuous transformation groups on turbulent statistical model equations. We show that at the infinite-Reynolds-number limit, the planar jet, in analogy to the turbulent axisymmetric wake, obeys the non-Kolmogorov dissipation law is an element of similar to C-is an element of((k) over bar)(3)(/2)/l, where the dissipation coefficient C-is an element of varies with the local and global Reynolds numbers Re-l and Re-0, respectively. In the planar jet, C-is an element of similar to (Re-0/Re-l)(m), with m = -2 + 2a(1)/a(2) preferably lying in [-2, 1], where a(1) and a(2) are dilation symmetry group parameters. When m is an element of [-2, 0) boolean OR (0, 1], the planar jet follows nontrivial power-law similarity scalings, while when m = -2 it may scale exponentially. The production P of turbulent kinetic energy (k) over bar in this study is considered as P = -(u' v') over bar partial derivative(u) over bar/partial derivative y - ((u'(2)) over bar - (v'(2)) over bar partial derivative(u) over bar/partial derivative x, where -(u' v') over bar, -(u'(2)) over bar, and -(v'(2)) over bar are Reynolds stresses. Thus, the laws support (k) over bar similar to ((u) over bar)(2) not similar to -(u' v') over bar when m not equal 0, (u) over bar being the mean streamwise velocity. The power-law scaling of the turbulent jet half-width and centerline mean streamwise velocity for m = 1 agree well with the recent experimental results. The entrainment coefficient, which is constant in streamwise distance when m = 0 (Kolmogorov dissipation), varies with streamwise distance when m is an element of [-2, 0) boolean OR (0, 1]. It scales nonlinearly as an exponent -1/3 of streamwise distance for m = 1, which agrees with the recent experimental observation of Cafiero and Vassilicos.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Non-Kolmogorov scaling and dissipation laws in planar turbulent plume
    Layek, G. C.
    Sunita
    [J]. PHYSICS OF FLUIDS, 2018, 30 (11)
  • [2] LIDAR systems operating in a non-Kolmogorov turbulent atmosphere
    Toselli, I.
    Wang, F.
    Korotkova, O.
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 743 - 758
  • [3] Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere
    Si, Congfang
    Zhang, Yixin
    [J]. OPTIK, 2013, 124 (12): : 1175 - 1178
  • [4] Backscatter amplification effect in a non-Kolmogorov anisotropic turbulent medium
    Banakh, V. A.
    Falits, A. V.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 289
  • [5] Average channel capacity in anisotropic atmospheric non-Kolmogorov turbulent medium
    Ata, Yalcin
    Baykal, Yahya
    Gokce, Muhsin Caner
    [J]. OPTICS COMMUNICATIONS, 2019, 451 : 129 - 135
  • [6] Measuring non-Kolmogorov turbulence
    Gladysz, Szymon
    Stein, Karin
    Sucher, Erik
    Sprung, Detlev
    [J]. REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XVIII; AND OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XVI, 2013, 8890
  • [7] Tripartite orbital angular momentum quantum information and non-Kolmogorov turbulent atmosphere
    Hu, Zheng-Da
    Zhai, Shuang
    Wang, Jicheng
    Zhu, Yun
    Zhang, Yixin
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (08)
  • [8] Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere
    Zhang, Yixin
    Wang, Yuanguang
    [J]. OPTIK, 2012, 123 (15): : 1360 - 1363
  • [9] Capacity for non-Kolmogorov turbulent optical links with beam wander and pointing errors
    Zhang, Yixin
    Si, Congfang
    Wang, Yuanguang
    Wang, Jianyu
    Jia, Jianjun
    [J]. OPTICS AND LASER TECHNOLOGY, 2011, 43 (07): : 1338 - 1342
  • [10] Differential image motion at non-Kolmogorov distortions of the turbulent wave-front
    Lazorenko, PF
    [J]. ASTRONOMY & ASTROPHYSICS, 2002, 382 (03) : 1125 - 1137