Fundamental theorems of Lagrangian surfaces in S2 x S2

被引:0
|
作者
Kimura, Makoto [1 ]
Suizu, Kaoru [2 ]
机构
[1] Shimane Univ, Dept Math, Interdisciplinary Fac Sci & Engn, Matsue, Shimane 6908504, Japan
[2] Seikyo Gakuen High Sch, Dept Math, Osaka 5868585, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence and SO(3) x SO(3)-congruence of Lagrangian immersion from oriented 2-dimensional Riemannian manifold to the Riemannian product of 2-spheres are studied. In particular, we will show that two minimal Lagrangian immersions are SO(3) x SO(3)-congruent if and only if the corresponding angle functions are coincide.
引用
收藏
页码:829 / 850
页数:22
相关论文
共 50 条
  • [21] Homotopy decomposition of a group of symplectomorphisms of S2 X S2
    Anjos, S
    Granja, G
    [J]. TOPOLOGY, 2004, 43 (03) : 599 - 618
  • [22] CONTRACTABLY EMBEDDED 2-SPHERES IN S2 X S2
    LEE, YW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (02) : 280 - 282
  • [23] Homotopy type of symplectomorphism groups of S2 x S2
    Anjos, Silvia
    [J]. GEOMETRY & TOPOLOGY, 2002, 6 : 195 - 218
  • [24] INVARIANT SP(1)-INSTANTONS ON S2 X S2
    UNGER, FR
    [J]. GEOMETRIAE DEDICATA, 1987, 23 (03) : 365 - 368
  • [25] Symmetric group actions on homotopy S2 x S2
    Liu, Ximin
    Li, Hongxia
    [J]. MONATSHEFTE FUR MATHEMATIK, 2008, 153 (01): : 49 - 57
  • [26] Concordances from the standard surface in S2 x S2
    Miller, Maggie
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (09)
  • [27] On N=2 supersymmetric gauge theories on S2 x S2
    Sinamuli, Musema
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [28] Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in S2 x S2
    Iriyeh, H
    Ono, H
    Sakai, T
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (10) : 167 - 170
  • [29] Constant angle surfaces in S2 x R
    Dillen, Franki
    Fastenakels, Johan
    Van der Veken, Joeri
    Vrancken, Luc
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 152 (02): : 89 - 96
  • [30] CLASSES OF WEINGARTEN SURFACES IN S2 x R
    Corro, Armando
    Pina, Romildo
    Souza, Marcelo
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (03): : 651 - 664