Symmetric group actions on homotopy S2 x S2

被引:0
|
作者
Liu, Ximin [1 ]
Li, Hongxia [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2008年 / 153卷 / 01期
关键词
homotopy S-2 x S-2; S-4-action; Seiberg-Witten theory;
D O I
10.1007/s00605-007-0514-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a closed smooth 4-manifold which is homotopy equivalent to S-2 x S-2. In this paper we use Seiberg-Witten theory to prove that if X admits a spin symmetric group S-4 action of even type with b(2)(+) (X/S-4) = b(2)(+)(X), then as an element of R(S-4), Ind D-S4 (X) = k(1)(1 - theta) + k(2)(psi(1) - psi(2)) for some integers k(1) and k(2), where 1, theta, psi(1), psi(2) are irreducible characters of S-4 of degree 1, 1, 3, and 3 respectively.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [1] Symmetric group actions on homotopy S2 × S2
    Ximin Liu
    Hongxia Li
    [J]. Monatshefte für Mathematik, 2008, 153 : 49 - 57
  • [2] Homotopy decomposition of a group of symplectomorphisms of S2 X S2
    Anjos, S
    Granja, G
    [J]. TOPOLOGY, 2004, 43 (03) : 599 - 618
  • [3] Homotopy type of symplectomorphism groups of S2 x S2
    Anjos, Silvia
    [J]. GEOMETRY & TOPOLOGY, 2002, 6 : 195 - 218
  • [4] On hypersurfaces of S2 X S2
    Urbano, Francisco
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (06) : 1381 - 1416
  • [5] A REGULAR HOMOTOPY OF S2
    JERRARD, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (09): : 973 - &
  • [6] On the Geometry of Hypersurfaces in S2 x S2
    Lu, Xiaoge
    Wang, Peng
    Wang, Xiaozhen
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [7] Minimal Surfaces in S2 x S2
    Torralbo, Francisco
    Urbano, Francisco
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1132 - 1156
  • [8] ON REAL HYPERSURFACES OF S2 x S2
    Gao, Dong
    Hu, Zejun
    Ma, Hui
    Yao, Zeke
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4447 - 4461
  • [9] Conformally formal manifolds and the uniformly quasiregular non-ellipticity of (S2 x S2)#(S2 x S2)
    Kangasniemi, Ilmari
    [J]. ADVANCES IN MATHEMATICS, 2021, 393
  • [10] Stability of fuzzy S2 x S2 x S2 in IIB type matrix models
    Kaneko, H
    Kitazawa, Y
    Tomino, D
    [J]. NUCLEAR PHYSICS B, 2005, 725 (1-2) : 93 - 114