Fundamental theorems of Lagrangian surfaces in S2 x S2

被引:0
|
作者
Kimura, Makoto [1 ]
Suizu, Kaoru [2 ]
机构
[1] Shimane Univ, Dept Math, Interdisciplinary Fac Sci & Engn, Matsue, Shimane 6908504, Japan
[2] Seikyo Gakuen High Sch, Dept Math, Osaka 5868585, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence and SO(3) x SO(3)-congruence of Lagrangian immersion from oriented 2-dimensional Riemannian manifold to the Riemannian product of 2-spheres are studied. In particular, we will show that two minimal Lagrangian immersions are SO(3) x SO(3)-congruent if and only if the corresponding angle functions are coincide.
引用
收藏
页码:829 / 850
页数:22
相关论文
共 50 条
  • [31] DOUBLE KNOT SURGERIES TO S4 AND S2 x S2
    Akbulut, Selman
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (12) : 1735 - 1741
  • [32] On some metrics on S2 × S2
    Kuranishi, Masatake
    [J]. Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [33] SU(2)-MULTI-INSTANTONS OVER S2 X S2
    BAUTISTA, R
    MUCINO, J
    ROSENBAUM, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1992, 24 (04) : 283 - 293
  • [34] Embedded spheres in S2 x S1# ••• #S2 x S1
    Gadgil, S
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (07) : 1141 - 1151
  • [35] A nondisplaceable Lagrangian torus in T*S2
    Albers, Peter
    Frauenfelder, Urs
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (08) : 1046 - 1051
  • [36] On Hopf hypersurfaces of S2 x S2 and H2 x H2
    Zhang, Xi
    Gao, Dong
    Hu, Zejun
    Yao, Zeke
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 194
  • [37] On some hypersurfaces of S2 x S2 and H2 x H2
    Hu, Zejun
    Zhang, Xi
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [38] NEW SPECTRAL CHARACTERIZATION THEOREMS FOR S2
    ENGMAN, M
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1992, 154 (02) : 215 - 229
  • [39] N=2 supersymmetric gauge theory on connected sums of S2 x S2
    Festuccia, Guido
    Qiu, Jian
    Winding, Jacob
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [40] From the Icosahedron to Natural Triangulations of CP2 and S2 x S2
    Bagchi, Bhaskar
    Datta, Basudeb
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 542 - 560