Fundamental theorems of Lagrangian surfaces in S2 x S2

被引:0
|
作者
Kimura, Makoto [1 ]
Suizu, Kaoru [2 ]
机构
[1] Shimane Univ, Dept Math, Interdisciplinary Fac Sci & Engn, Matsue, Shimane 6908504, Japan
[2] Seikyo Gakuen High Sch, Dept Math, Osaka 5868585, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence and SO(3) x SO(3)-congruence of Lagrangian immersion from oriented 2-dimensional Riemannian manifold to the Riemannian product of 2-spheres are studied. In particular, we will show that two minimal Lagrangian immersions are SO(3) x SO(3)-congruent if and only if the corresponding angle functions are coincide.
引用
收藏
页码:829 / 850
页数:22
相关论文
共 50 条
  • [1] Tight Lagrangian surfaces in S2 x S2
    Iriyeh, Hiroshi
    Sakai, Takashi
    [J]. GEOMETRIAE DEDICATA, 2010, 145 (01) : 1 - 17
  • [2] Tight Lagrangian surfaces in S2 × S2
    Hiroshi Iriyeh
    Takashi Sakai
    [J]. Geometriae Dedicata, 2010, 145 : 1 - 17
  • [3] Minimal Surfaces in S2 x S2
    Torralbo, Francisco
    Urbano, Francisco
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1132 - 1156
  • [4] Unknottedness of real Lagrangian tori in S2 x S2
    Kim, Joontae
    [J]. MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 891 - 905
  • [5] On certain Lagrangian submanifolds of S2 x S2 and CPn
    Oakley, Joel
    Usher, Michael
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (01): : 149 - 209
  • [6] LAGRANGIAN ISOTOPY OF TORI IN S2 x S2 AND CP2
    Dimitroglou Rizell, Georgios
    Goodman, Elizabeth
    Ivrii, Alexander
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (05) : 1297 - 1358
  • [7] ON EXOTIC MONOTONE LAGRANGIAN TORI IN CP2 AND S2 X S2
    Gadbled, Agnes
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (03) : 343 - 361
  • [8] HAMILTONIAN UNKNOTTEDNESS OF CERTAIN MONOTONE LAGRANGIAN TORI IN S2 x S2
    Cieliebak, Kai
    Schwingenheuer, Martin
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 299 (02) : 427 - 468
  • [9] On hypersurfaces of S2 X S2
    Urbano, Francisco
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (06) : 1381 - 1416
  • [10] On the Geometry of Hypersurfaces in S2 x S2
    Lu, Xiaoge
    Wang, Peng
    Wang, Xiaozhen
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)