LAGRANGIAN ISOTOPY OF TORI IN S2 x S2 AND CP2

被引:0
|
作者
Dimitroglou Rizell, Georgios [1 ]
Goodman, Elizabeth [2 ]
Ivrii, Alexander [3 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Stanford Univ, Dept Math, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USA
[3] Univ Haifa Campus, IBM Res Haifa, IBM R&D Labs Israel, IL-3498825 Haifa, Israel
基金
美国国家卫生研究院;
关键词
SYMPLECTIC HYPERSURFACES; MASLOV CLASS; CLASSIFICATION; COMPACTNESS; SURFACES; HOMOLOGY; CURVES;
D O I
10.1007/s00039-016-0388-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to Lagrangian isotopy, there is a unique Lagrangian torus inside each of the following uniruled symplectic four-manifolds: the symplectic vector space R-4, the projective plane CP2, and the monotone S-2 x S-2. The result is proven by studying pseudoholomorphic foliations while performing the splitting construction from symplectic field theory along the Lagrangian torus. A number of other related results are also shown. Notably, the nearby Lagrangian conjecture is established for T*T-2, i.e. it is shown that every closed exact Lagrangian submanifold in this cotangent bundle is Hamiltonian isotopic to the zero-section.
引用
收藏
页码:1297 / 1358
页数:62
相关论文
共 50 条
  • [1] ON EXOTIC MONOTONE LAGRANGIAN TORI IN CP2 AND S2 X S2
    Gadbled, Agnes
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (03) : 343 - 361
  • [2] Unknottedness of real Lagrangian tori in S2 x S2
    Kim, Joontae
    [J]. MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 891 - 905
  • [3] From the Icosahedron to Natural Triangulations of CP2 and S2 x S2
    Bagchi, Bhaskar
    Datta, Basudeb
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 542 - 560
  • [4] HAMILTONIAN UNKNOTTEDNESS OF CERTAIN MONOTONE LAGRANGIAN TORI IN S2 x S2
    Cieliebak, Kai
    Schwingenheuer, Martin
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 299 (02) : 427 - 468
  • [5] Tight Lagrangian surfaces in S2 x S2
    Iriyeh, Hiroshi
    Sakai, Takashi
    [J]. GEOMETRIAE DEDICATA, 2010, 145 (01) : 1 - 17
  • [6] On certain Lagrangian submanifolds of S2 x S2 and CPn
    Oakley, Joel
    Usher, Michael
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (01): : 149 - 209
  • [7] Fundamental theorems of Lagrangian surfaces in S2 x S2
    Kimura, Makoto
    Suizu, Kaoru
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (04) : 829 - 850
  • [8] Tight Lagrangian surfaces in S2 × S2
    Hiroshi Iriyeh
    Takashi Sakai
    [J]. Geometriae Dedicata, 2010, 145 : 1 - 17
  • [9] On hypersurfaces of S2 X S2
    Urbano, Francisco
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (06) : 1381 - 1416
  • [10] Gauge theory on fuzzy S2 and CP2 and random matrices
    Steinacker, H
    [J]. Noncommutative Geometry and Physics, 2005, : 357 - 368