Fractality of largest clusters and the percolation transition in power-law diluted chains

被引:4
|
作者
Albuquerque, SS [1 ]
de Moura, FABF
Lyra, ML
de Souza, AJF
机构
[1] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Fed Rural Pernambuco, Dept Fis & Matemat, BR-52171030 Recife, PE, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.016116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Relying on the fractal character of the largest clusters at criticality, we employ a finite-size scaling analysis to obtain an accurate phase-diagram of the percolation transition in chains with bond concentration decaying as a power-law on the form 1/r(1+sigma). For the particular case of sigma=1, no percolation transition is observed to occur at a finite dilution, in contrast with the finite temperature Kosterlitz-Thouless transition exhibited in Ising and Potts chains with inverse square-law couplings. The fractal dimension of the critical percolation cluster is found to follow distinct dependencies on the decay exponent being numerically fitted by d(f)=0.35+4 sigma/5 for 0 <sigma < 1/2 and d(f)=(1+sigma)/2 for 1/2 <sigma < 1. We also compute average mass ratios of the two largest clusters at criticality.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Transition state theory: A generalization to nonequilibrium systems with power-law distributions
    Du Jiulin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1718 - 1728
  • [42] Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids
    Spyridis, Paul
    Mazenko, Gene F.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (04) : 1030 - 1056
  • [43] Scattering at the Anderson transition:: Power-law banded random matrix model
    Mendez-Bermudez, J. A.
    Varga, I.
    PHYSICAL REVIEW B, 2006, 74 (12)
  • [44] Transition in the Flow of Power-Law Fluids through Isotropic Porous Media
    Zami-Pierre, F.
    de Loubens, R.
    Quintard, M.
    Davit, Y.
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [45] Convective to absolute instability transition in the Prats flow of a power-law fluid
    Alves, Leonardo S. de B.
    Barletta, Antonio
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 94 : 270 - 282
  • [46] Shock-driven transition to turbulence: Emergence of power-law scaling
    Olmstead, D.
    Wayne, P.
    Simons, D.
    Monje, I. Trueba
    Yoo, J. H.
    Kumar, S.
    Truman, C. R.
    Vorobieff, P.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (05):
  • [47] Persistence of power-law correlations in nonequilibrium steady states of gapped quantum spin chains
    Lancaster, Jarrett L.
    Godoy, Joseph P.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [48] Study on the coupling energy of two-dimensional magnetic clusters with power-law interaction
    Xu Xiao-Jun
    Wang Feng-Fei
    Cai Ping-Gen
    Wei Gao-Yao
    Sui Cheng-Hua
    ACTA PHYSICA SINICA, 2007, 56 (12) : 6881 - 6885
  • [49] Non-universality of the absorbing-state phase-transition in a linear chain with power-law diluted long-range connectioris.
    da Silva, M. B.
    da Silva, P. C.
    Macedo-Filho, A.
    Lyra, M. L.
    Serva, M.
    Albuquerque, E. L.
    Fulco, U. L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 271 - 278